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Motivation
Representation of clouds in convection permitting models is sensitive to NWP parameters 
that are often very crudely known.

Goal
Treat these parameters as uncertain and estimate them along with the state in order to:
o Reduce forecast errors 
o Better capture the uncertainty of forecasts

Challenges
o Non-Gaussianity
o Violation of conservation laws 

Research Question
What is more effective:
o Taking higher order moments into account (Quadratic Filter, Hodyss 2012)
o Satisfying conservation laws and physical bounds (QP Ensemble, Janjic et al 2014)
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Augmented state parameter estimation

Forecast Observations

Initial Conditions

𝐱b(𝑖) ← 𝑓 𝐱a(𝑖)
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Parameters are updated through their correlation with the state!
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Dynamical model 
for parameters

Forecast

Forecast

Initial Conditions

Initial Conditions
Spread for state variables:

Forecast

Initial Conditions
Initial Conditions

Spread for parameters:
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Covariance Localization (Gaspari and Cohn)

No localization in 
parameter space 
localization matrix 
positive indefinite!!

Global updating:

where 𝐜 =
𝟏

𝒏
𝐞

=

Localization 
matrix for the 
Quadratic Filter

𝐋 𝐜

𝐜𝐓 1
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𝐏 Cov 𝐱𝐟 , 𝛉𝐟

Cov 𝐱𝐟 , 𝛉𝐟 Cov 𝛉𝐟 , 𝛉𝐟



Experiment set-up

o Twin experiment
o Radar and aircraft observations
o Initial parameter values are draw 

from uniform distributions
Space
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(Wuersch and Craig, 2014)
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Results

o RMSE/Spread ratio is best 
when parameters are 
estimated for all algorithms

o QF is suited for parameter 
estimation 



o QF needs a sufficiently large 
ensemble size to beat the EnKF
but is most sensitive to 
ensemble size 

o Positive feedback between state 
and parameters

o RMSE/Spread ratio is best for 
QPEns

o Taking higher order moments 
into account reduces mass bias

o QPEns suppresses spurious 
convection
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Algorithm comparison
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Parameter error evolution 
for EnKF (50 members)Snapshot



Conclusion
(Ruckstuhl and Janjic, 2018)

o For small ensemble sizes conserving physical properties is 
more beneficial

o Taking higher order moments into account becomes more 
beneficial as ensemble size increases

o Taking higher moments into account for parameter estimation 
shows benefits for all ensemble sizes

o Even EnKF does well for all ensemble sizes!!!

Outlook
o Estimation of roughness length in COSMO-KENDA
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Motivation
Cloud representation is highly dependent on accuracy of calculated 
surface fluxes. But calculation of surface fluxes contains many 
uncertainties. These uncertainties lead to model errors that are 
ignored in weather prediction systems.

Approach
Identify parameters that directly 
influence surface fluxes (roughness 
lengths) and estimate them along 
with the state to:
o Reduce forecast errors
o Better capture uncertainty of

forecasts
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Estimation of roughness length in COSMO KENDA
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