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Data assimilation has been rather succesfull in estimating the state of the system.

DA may play a role in model development and process-oriented understanding which is

still largely unexplored and underdeveloped.

The talk is biased toward Ensemble Kalman filtering



Potential applications

1. Parameter estimation (Annan et al 2003; Aksoy et al 2006; Tong and Xue, 2008;

Ruiz et al 2013, among others)

2. Model error treatment (Ruiz and Pulido, 2015)

3. Model or parameterization development (Lang and van Leeuwen, 2016; Pulido et al

2016)

4. Process-oriented understanding based on model-observations (Scheffler and Pulido

2017)

5. Model and observational error covariance estimation (Ueno et al. 2015, Dreano et al

2017). Localization, inflation estimation.



Augmented state approach

Offline estimation with pseudo-observations

Maximum likelihood methods



Definition - Scope of the term

What do I refer to as “parameters”?

• Deterministic parameters of the dynamical model, e.g. those related to a physical

parameterization.

• Stochastic parameters of physical parameterizations.

• Statistical parameters related to observational or model error covariances. Inflation

factors. Localization parameters.

• Initial apriori density or background parameters (e.g. mean and/or covariance) p0(x),

xb, B .



Augmented state approach

xag = [x,xp], Hag = [H(·),0]

In general, they are assumed constant during model evolution, xpk = xp(k−1).

Mag =

[

M(·) 0

0 I

]

Each ensemble member has a different set of parameter values.

Do not require any changes in the assimilation code. Any EnKF can be used.

xa
p = xf

p +Kp(y −H(x
f ))

Kp = PpxH
T(HPxxH

T +R)T

Ppx propagates observational information to the parameters.



Why is more challenging parameter than state estimation?

• They are non-observed.

We can only infer them through state-parameter covariances.

• They are static.

Their impact diminishes with time.

• Parameter posterior distribution are highly nongaussian.

They usually have a highly nonlinear response (in state variables).

They are constrained (e.g. only positive parameters make physical sense).

• Global parameters are incompatible with localization.



Convective parameters in a simple GCM

RHBL

ENTMAX

TRCNV

Twin experiments using

LETKF and SPEEDY model.

From Ruiz et al (2013)

No need of localization for global parameters. Independent parameter inflation treatment.



Model error treatment with convective parameters

New unstable subspaces could be ex-

plored with augmented approach.

From Ruiz and Pulido (2015)

Two caveats: Convective parameters are fixing other sources of model error.

(Apriori) parameter constraints to realistic values are essential.



Offline approach

xt −M(xt−1) = ISL(xt−1,x
S
t−1)

= P(xt−1,xp)

= F(tk)

→ interaction term. xS
t−1 not resolved.

→ representation by a parameterization

→ representation in the assimilation

F would be representing sources of missing momentum or heat. In the aumented state

approach, they will be estimated by xag = [x,F].

Once Fa
k are estimated, they could be interpreted as pseudo-observations. Suitable for

Bayesian or deterministic inverse techniques:

J(xp) =
∑

k

∥

∥Fa
k − P(x

a
k,xp)

∥

∥

2

A
+
∥

∥xp − xb
p

∥

∥

2

Bp

Central assumption: Short assimilation cycles.



Offline approach: proof-of-concept

Truth forcing,PTr

Two-scale L96

Linear splines

continuous curves

Augmented forcing (offlline) Augmented parameters

L96 with shear forcing

From Pulido et al (2016)



Offline approach in the middle atmosphere

Estimation of gravity wave drag parameters from

missing momentum. 4Dvar + Genetic algorithm.

Optimal parameters improve substantially the delay in

the vortex breakdown.

The approach can capture the complex resolved-

parameterization (unresolved wave) interactions.

From Scheffler and Pulido (2017)



A proposed method to estimate covariances:

Maximum likelihood estimation in hidden Markov models given a batch of observations.



Estimation of model error covariances

Can we estimate with the augmented state approach model error covariances?

Delsole and Yang, 2010:

“The lack of dependence between mean forecast and parameter implies that the mean

forecast cannot be used to infer the value of an additive stochastic parameter in a linear

model.”

In a first order AR model,

xk = φxk−1 + ση, η ∼ N (0, 1)

cov(xf
k , σ

f
k ) = φ cov(xa

k−1, σ
a
k−1)

Since φ < 1 then cov(xf
k , σ

f
k )→ 0.

Along the same lines, Law and Stuart (2012) show that EnKF does not give a good

measure of the uncertainty.



Problem statement

Given a Hidden Markov model,

xk =MΩ(xk−1) + ηk,

yk = H(xk) + ǫk,

where we assume errors are Gaussian ηk = N (0,Qk) and ǫk = N (0,Rk). The

additive assumption is not essential.

Given a set of observations distributed in time, we want to estimate the initial prior

distribution p(x0), and/or the observation error covariance Rk, the model error

covariance Qk, and/or deterministic and stochastic physical parameters Ω ofM



Maximum likelihood estimation

We want to find a set of parameters of the densities involved in the HMM that maximizes

the observation likelihood under the presence of a hidden state

l(θ) = ln p(y1:K ;θ) = ln

∫

p(x0:K ,y1:K ;θ)dx0:K .

where p(x0:K ,y1:K ;θ) is the joint density.

We seek for the parameter values that give the most likely density.

Note that we are thinking in a batch of observations from t1 to tK .

Any (efficient) optimization method could be used. One of the most used in latent

variable models is the algorithm of Expectation-Maximization (Dempster, et al 1977).



Expectation-Maximization principles

Suppose a proposal density q(x0:K)

l(θ) = ln

∫

q(x0:K)
p(x0:K,y1:K ;θ)

q(x0:K)
dx0:K

≥

∫

q(x0:K) ln

(

p(x0:K ,y1:K ;θ)

q(x0:K)

)

dx0:K ≡ P(q, θ).

where P(q, θ) is the intermidiate function (Neal and Hinton, 1999). It depends on the

proposal density and on the parameters.



Expectation Step

Given that p(x0:K,y1:K ;θ) = p(x0:K|y1:K ;θ)p(y1:K;θ),

P(q, θ) = −DKL(q|p(x0:K|y1:K ;θ)) + l(θ)

where DKL(q|p) is the Kullback-Leibler divergence between the densities.

Since DKL(q|p) = 0 iff q = p, then q = p(x0:K|y1:K ;θ) gives an upper bound of

P(q,θ).

The expectation step in practice involves finding the posterior density p(x0:K|y1:K ;θ
′)

assuming the set of parameters are known.

The conditioning is over the whole set of observations→ a smoother is required!



Maximization Step

Now we want to maximize the intermediate function as a function of θ for a fixed q̂,

P(q̂, θ),
∫

p(x0:K |y1:K ;θ
′) ln (p(x0:K,y1:K ;θ)) dx0:K ≡ E [ln (p(x0:K ,y1:K ;θ)) |y1:K ] ,

Instead of maximizing the joint distribution integrated in the full hidden state, the EM

algorithm requires maximizing the expectation of ln p given the observations.

The maximum is found at

∇θE [ln (p(x0:K ,y1:K ;θ)) |y1:K ] =0

E
[

∇θ ln (p(x0:K,y1:K ;θ)) |y1:K

]

=0



Gaussian HMM

For an HMM, the joint density is factorable,

p(x0:K,y1:K) = p(x0)
K
∏

k=1

p(xk|xk−1)p(yk|xk).

considering errors are Gaussian,

ln(p(x0:K,y1:K)) = −
1

2
ln |P0| −

1

2

∥

∥x0 − x0

∥

∥

2

P0

−
K

2
ln |Q|

−
1

2

K
∑

k=1

∥

∥xk −M (xk−1)
∥

∥

2

Q
−

K

2
ln |R| −

1

2

K
∑

k=1

∥

∥yk −H (xk))
∥

∥

2

R

The root of the grad is available analytically:

Q =
1

K

K
∑

k=1

E
(

[xk −M (xk−1)] [xk −M (xk−1)]
T
∣

∣y1:k,θ
′

)

.

This expresion could be used with an ensemble Kalman smoother or with a particle

smoother.



Algorithm

Input: Given X0,1 = {x
(j)
0,1}

Np

j=1, y1:K , R0, Q0

for i = 1, imax do ⊲ or a convergence criterion

Xa
1:K ,X

f
1:K ← EnKF (X0,i, y1:K , Qi, Ri) ⊲ Filter

Xs
0:K ,X

f
1:K ← RTS(Xa

1:K ,X
f
1:K) ⊲ Smoother, X

f
k =M(Xs

k−1)

Qi+1←
1
K

∑

k(X
s
k −X

f
k)(X

s
k −X

f
k)

T

Ri+1←
1
K

∑

k(yk −H(X
s
k))(yk −H(X

s
k))

T

X0,i+1←Xs
0 ⊲ New initial density

end for

Output: {X0,iimax
, Rimax+1, Qimax+1}



Estimating model error covariance in Lorenz-63

Averaged log-lik for 20 experiments.

From Dreano et al. (2017).

Averaged estimated model error covariance

for 20 experiments.

Twin experiments with R = 2I and Qt = 0.05I. 100 cycles.



Stochastic parameterizations. Non-aditive model error

Most parameterizations have non-additive stochastic parameters. The augmented state

approach allows to rewrite these systems to one with additive model error.

Any HMM with nonadditive model error

xk =M(xk−1,ηk) + νk

can be converted in an HMM with additive model error by augmenting the state space,

xk =M(xk−1, zk−1) + νk

zk = ηk

where time indeces for ηk have been shifted one time backward.



Stochastic parameterizations. Non-aditive model error
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Twin experiment with Lorenz-96 and a quadratic stochastic parameterization.

Pn(x, a) = α2x
2
n + α1xn + α0 each parameter a random variable with

αi = N (ai, σi).

From Pulido et al. in press



Two-scale Lorenz-96

Imperfect model. Suppose we want to find a parameterization of the 1scl-Lorenz-96 of

the form P(x, a) =
∑

i αix
i to mimic two-scale Lorenz-96.
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Optimal values are unknown in this case. 20 experiments with different initial values.

Different structural parameterizations can be evaluated. The larger maximal likelihood

the better structure. Second degree is the optimal polynomial param.



Representation of the identified stochastic parameterizations.
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F=18 Truth

Determis. Par

White noise Random walk

NR approach

All the knowledge of the param-

eterization is coming from obser-

vations of (only) large-scale vari-

ables.

A much better representation of

the small-scale effects on large

scale variables is obtained with

the stochastic parameterization.



Conclusions

• Deterministic parameters are well estimated with augmented EnKF approach. No

need of localization for global parameters.

• For model structure identification or parameterization development, the offline

approach gives promising results. Further testing are required.

• The EM algorithm is a quite straighforward method to estimate optimal statistical

parameters in a data assimilation system.

• EM gives highly robust estimations of stochastic parameters.


