State-dependent Additive Covariance Inflation for Radar Reflectivity Assimilation

^{*1}Yokota. S., ^{1,2}H. Seko, ^{3,1}M. Kunii, ^{4,1}H. Yamauchi, ¹E. Sato

¹Meteorological Research Institute, JMA ²Japan Agency for Marine-Earth Science and Technology ³Numerical Prediction Division, Forecast Department, JMA ⁴Administration Division, Observation Department, JMA

2018/3/5-9 ISDA2018

How to Assimilate Radar Reflectivity Directly

To improve rainfall forecast by "direct" assimilation of radar reflectivity, atmospheric state should be modified based on **correlation between the Atmospheric State and Hydrometeor**

[3DVar] given climatologically (difficult to be estimated) [4DVar] calculated by linear model (difficult to make the model) [EnKF] calculated by ensemble forecasts (not difficult, but ...)

Introduction

Problem of Reflectivity Assimilation with EnKF

Introduction

3-type Error Covariance Inflation

1. Multiplicative (Anderson and Anderson 1999)

$$\delta \mathbf{x}_{i}^{f} \leftarrow \rho \delta \mathbf{x}_{i}^{f} \quad (\rho > 1)$$

 \rightarrow If $\delta Z_{H}^{f}=0$, **BH**^T=0

$$\mathbf{K} = \mathbf{B}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R}\right)^{-1}$$

$$\mathbf{f} \qquad \mathbf{k}$$

$$\mathbf{E} \left[\delta \mathbf{x}^{f} \delta \mathbf{Z}_{H}^{f} \right] \mathbf{E} \left[\delta \mathbf{Z}_{H}^{f} \delta \mathbf{Z}_{H}^{f} \right]$$

2. Additive (Mitchell and Houtekamer 2000)

$$\delta \mathbf{x}_{i}^{f(a)} \leftarrow \delta \mathbf{x}_{i}^{f(a)} + \mathbf{q}_{i} \qquad (\mathbf{q}_{i} \sim N(0, \sigma^{2}))$$

→ If $\delta Z_H^f = 0$, **BH**^{*T*}= $E[\delta \mathbf{x}_i^f \mathbf{q}_i] = 0$ because \mathbf{q}_i is random perturbation

3. Relaxation to prior (Zhang et al. 2004)

$$\delta \mathbf{x}_{i}^{a} \leftarrow \alpha \delta \mathbf{x}_{i}^{f} + (1 - \alpha) \delta \mathbf{x}_{i}^{a} \quad (0 < \alpha < 1)$$

$$\rightarrow$$
 If $\delta Z_H^{f}=0$, **BH**^T=0

 \rightarrow We propose to introduce **non-random** δZ_H **that has reasonable correlation with** $\delta \mathbf{x}^f$

State-dependent Additive Inflation of Z_H^{f}

 Z_H^{f} of member *i* is replaced with following $\delta Z_H^{f(i)}$ before assimilation if rainfall is not forecasted at obs. points in all members

→ Additional δZ_H^f is not random but correlated with $(u^f, v^f, w^f, T^f, q_v^f)$ → Atmospheric state can be modified by Z_H assimilation Experiment to Check Impact of δZ_H^{f}

Target: Tornadic Supercell in 6 May 2012

3 tornadoes were generated almost simultaneously at 1230 JST. South one is estimated F3 (70-92 m/s).

There were dense radar and surface observations.

MRI advanced C-band solid-state polarimetric (MACS-POL) radar

Damaged area \rightarrow Development of the tornadic supercell was observed in detail by MACS-POL \rightarrow Suitable for investigating assimilation impact of the polarimetric radar

JMA radar

Experiment to Check Impact of δZ_{H}^{f}

146E

30N 132F

134E

136F

138E

140E

142E

800 1000

144E

Assimilation Experiments with LETKF [<]

Local ensemble transform Kalman filter

Operational obs.: Surface (pressure), Radiosondes (wind / temperature / humidity), Aircrafts (wind / temperature), Radars (Doppler wind / humidity), Wind profiler radars (wind), Microwave scatterometers (wind), Visible / infrared imagers (wind), and GNSS (precipitable water vapor)

Experimental Design

How to Assimilate Z_H^{obs}

• $Z_H^f[dBZ]$ is calculated from forecasted rain, snow, and graupel (q_r^f, q_s^f, q_g^f)

- Observation error variance of Z_H^{obs} : $\sigma_Z^2 = (5 \text{dB}Z)^2$
- Attenuation of Z_H^{obs} is corrected by $Z_H^{obs} + 0.073 \Phi_{DP}^{obs} \rightarrow Z_H^{obs}$ (Jameson 1992)
- Z_H^{obs} is interpolated to 2-km grid (influence radius: 1km) before assimilation
- $Z_H^{obs}=0$ dBZ [$\sigma_Z^2=(50$ dBZ)²] is assimilated at points of $Z_H^{obs}<15$ dBZ

Characteristic of Added δZ_H^f

Characteristic of Added δZ_{μ}^{f}

 $\delta Z_{H}^{f(i)} = \frac{\partial Z_{H}^{f}}{\partial u^{f}} \delta u^{f(i)} + \frac{\partial Z_{H}^{f}}{\partial v^{f}} \delta v^{f(i)} + \frac{\partial Z_{H}^{f}}{\partial w^{f}} \delta w^{f(i)} + \frac{\partial Z_{H}^{f}}{\partial T^{f}} \delta T^{f(i)}$ $\frac{\partial Z_{H}^{f}}{\partial q_{v}^{f}} \delta q_{v}^{f(i)}$

 T^{f}

0.4

w

0

0.2

N

-0.6 -0.4 -0.2

11

-0.8

 $(d)COR(Z_{H}^{f},T^{f})$

Tf

0.6

0.4

 q_v^J

0.5

 $(e)COR(Z_{H}^{\dagger},q_{v}^{\dagger})$

 q_v^J

0.8

 $(f)STD(Z_{H}^{f})$

0.6 (dBZ)

Correlation between $\mathbf{x}^{f} = (u^{f}, v^{f}, w^{f}, T^{f}, q_{v}^{f})$ and δZ_{H}^{f} in 1110JST @5-km AGL

Large correlation of δv^f and δq_v^f

Modification of Atmospheric State by Additional δZ_{H}^{f}

Change of Rainfall Forecast by Additional δZ_H^{f}

Change of Rainfall Forecast by Additional δZ_H^{f}

Fractions Skill Score Verification

Fractions Skill Score Verification

Verification using rainfall estimated by JMA radars between 1130-1300JST

(horizontal scale=20km)

• Summary

- To improve rainfall forecast by "direct" assimilation of $Z_{H'}$ atmospheric state should be modified based on <u>correlation</u> <u>between the Atmospheric State and Hydrometeor</u>
- However, there is no impact of assimilation of Z_H at points where rainfall is not forecasted

 \rightarrow We suggest to <u>add Z_H perturbations correlated with the</u> <u>atmospheric state</u> before assimilation at points where rainfall was not forecasted. (It has possibly to improve short-term rainfall forecast.)

• Future issues

- Applying to other cases (local rainfall, snow, and so on)
- Improving making perturbations when the number of samples is small
- Improving attenuation correction of snow and graupel

<u>Acknowledgements</u>: This work was supported in part by "Social and Scientific Priority Issues (Theme 4) to Be Tackled by Using Post K Computer of the FLAGSHIP2020 Project" (ID: hp160229, hp170246), "Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities (TOMACS)," and JSPS KAKENHI Grant Number JP16K17804 and JP16H04054. Radar data were provided from JMA and Ministry of Land, Infrastructure, Transport and Tourism. Surface data were provided from JMA and NTT DOCOMO, Inc.