

Assimilation of GPM/DPR in Km-scale Hybrid-4DVar system

Yasutaka Ikuta

Numerical Prediction Division / Japan Meteorological Agency

6th International Symposium on Data Assimilation, 5 - 9 March 2018, Munich, Germany

気象庁 Japan Meteorological Agency

Operational Meso-scale NWP system in JMA

- Main purpose
 - Providing disaster prevention information and aviation weather forecast
- Meso-Scale model (MSM) and Local Forecast Model (LFM)
 - 3-ice 6-class cloud microphysics process scheme
 - Prognostic hydrometeors
 - Water vapor, cloud, rain, ice, snow and graupel
 - These hydrometeor profiles are needed to calculate reflectivity and radiance in data assimilation.
- Meso-Scale Analysis (MA)
 - 4D-Var data assimilation system
 - Hydrometeors are not control variables.

Future Plan: Hybrid-4DVar with control variable of hydrometeors

Global NWP System

Global Spectral Model (GSM) Horizontal resolution:TL959(0.1875 deg) Global Analysis (GA): 4D-Var

Meso-Scale NWP System

Meso-scale model (MSM) Horizontal resolution: 5 km Meso-Scale Analysis (MA): 4D-Var

Local NWP System

Local Forecast model (LFM) Horizontal resolution: 2 km Local Analysis (LA):3D-Var Analysis cycle

Current state of GPM/DPR assimilation at JMA

- In the operational Meso-Scale NWP system
 - Traditional 4DVAR
 - Climatological background error covariance
 - Hydrometeors are "**not**" control variables.
 - GPM/DPR assimilation method
 - Indirect assimilation (1D+4DVAR)
 - Assimilation of relative humidity profile retrieved from reflectivity
- Operational assimilation of GPM/DPR started in March 2016.

.

Further Utilization of GPM/DPR

- Characteristics of DPR
 - 3-D information of hydrometeors
 - Sensitivity to snow particles

- Covering not only land area, but also sea area
- Benefit of the utilization of DPR in DA
 - Improvement of hydrometeors reproducibility in initial time
 -> Improvement of precipitation forecast
- Useful way to achieve the goal for MSM purpose

Next step of DPR assimilation

Indirect assimilation

using retrieved RH profiles in **traditional 4DVAR**

Direct assimilation

using reflectivity (KuPR, KaPR) profiles in **new Hybrid-4DVAR**

Formulation of Flow-dependent Assimilation

Cost function

$$J = \frac{1}{2} \beta_n^2 \delta \mathbf{x}_{n0}^T \mathbf{B}_{NMC}^{-1} \delta \mathbf{x}_{n0} + \frac{1}{2} \beta_e^2 \delta \mathbf{x}_{e0}^T \mathbf{B}_{ENS}^{-1} \delta \mathbf{x}_{e0}$$
$$+ \frac{1}{2} \sum_{t} (\mathbf{H} \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t)^T \mathbf{R}_t^{-1} (\mathbf{H} \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t)$$
$$\underline{\mathbf{1. Observation term}}$$

- 2. Climatological term
- BG covariance is given by statistics of forecast error.

3. Flow-dependent term

• BG covariance is estimated from ensemble forecasts.

• This term measures the fit based on the flow-dependent background error **in various meteorological situations.**

6

1-moment Cloud microphysics optimized for DA

Cloud particle

PSD: mono-dispersion

 $\frac{\text{Mass}}{m_c} = \frac{\pi}{6} \rho_c D^3 \left[\text{kg} \right]$

Rain and graupel particle

 $\frac{\text{PSD: exponential}}{\text{Mass}}$ $m_{r,g} = \frac{\pi}{6} \rho_{r,g} D^3 [\text{kg}]$

Heymsfield and Iaquinta (2000)

PSD: mono-dispersion

 $n_x\left(D\right) = N_x \delta\left(D - \bar{D}_x\right)$

$$\frac{\text{Mass}}{m_i} = 7.0 \times 10^{-3} D^2 \, \text{[kg]}$$

Snow particle

Thompson et al. (2008)

PSD: exponential + modified gamma

For midlatitude cloud (Field et al. 2007) $n_x(D) = \frac{\mathcal{M}_2^4}{\mathcal{M}_3^4} \left[\kappa_0 \exp\left(-\frac{\mathcal{M}_2}{\mathcal{M}_2} \Lambda_0 D\right) + \kappa_1 \left(\frac{\mathcal{M}_2}{\mathcal{M}_2} D\right)^{\mu} \exp\left(-\frac{\mathcal{M}_2}{\mathcal{M}_2} \Lambda_1 D\right) \right]$

 $\frac{\text{Mass}}{m_s} = 6.9 \times 10^{-2} D^2 \, \text{[kg]}$

Bulk snow density

$$\rho_s = 1.3 \times 10^{-1} D^{-1} [\text{kg m}^{-3}]$$

.

TL/AD of cloud microphysics are needed for reflectivity and cloudy radiance direct assimilation.

Comparison of Simulation and Observation

Simulation

<u>Horizontal resolution: 2 km, Lead time: 9-hour</u> <u>Shape: non-spherical, Snow-PSD: exponential+gamma</u>

Observation (Himawari-8 AHI)

) 気象庁 Japan Meteorological Agency

Tangent Linearization of Microphysics Scheme

気象庁 Japan Meteorological Agency

Enhancement of space-borne radar simulator

- Space-borne radar simulator
 - Simplified because of reducing computation cost
 - Beam: Not-bending
 - Ignoring the slant beam path and beam width
 - Effective particle: Rain, snow and graupel
 - Ignoring cloud water and cloud ice particles
 - Size distribution
 - rain and graupel: Exponential distribution
 - snow: Exponential + modified gamma distribution
 - Particle type
 - Spherical or Non-spherical particle
 - Scattering calculation
 - LUT (Lorenz-Mie, DDA)
 - Single scattering

Shape of snow particle for scattering

Spherical snow

Scattering: Lorentz-Mie

Type-A snowflakes in Liu(2008)

Scattering: DDA(Discrete Dipole Approximation)

In current method, snow particles are assumed as spherical particle.

These dipoles by DDSCAT 7.3

Radar Reflectivity of Snow

CFADs of radar reflectivity

Contour frequency by altitude diagrams (CFADs)

SCT: sector of snowflakes SPH: spherical particle of snow SCT is weaker than SPH, however model bias is larger than difference of particle shape.

Tangent-linear and Adjoint of Radar Simulator

Function of reflectivity calculation

Similarity between Z(Q,T) and **Z**.

気象庁 Japan Meteorological Agency

Formulation of Flow-dependent Assimilation

Cost function

J

$$=\frac{1}{2}\beta_{n}^{2}\delta\mathbf{x}_{n0}^{T}\mathbf{B}_{NMC}^{-1}\delta\mathbf{x}_{n0} + \frac{1}{2}\beta_{e}^{2}\delta\mathbf{x}_{e0}^{T}\mathbf{B}_{ENS}^{-1}\delta\mathbf{x}_{e0}$$
$$+\frac{1}{2}\sum_{t}(\mathbf{H}\mathbf{M}_{t}\delta\mathbf{x}_{0} - \mathbf{d}_{t})^{T}\mathbf{R}_{t}^{-1}(\mathbf{H}\mathbf{M}_{t}\delta\mathbf{x}_{0} - \mathbf{d}_{t})$$
$$1. \text{ Observation term}$$

2. Climatological term

 BG covariance is given by statistics of forecast error.

3. Flow-dependent term

• BG covariance is estimated from ensemble forecasts.

.

• This term measures the fit based on the flow-dependent background error **in various meteorological situations.**

Statistical BG Error Vertical Covariance $\mathbf{B}_{NMC} = \langle \mathbf{x}_{6h} - \mathbf{x}_{3h}, (\mathbf{x}_{6h} - \mathbf{x}_{3h})^T \rangle$

Simplification of Background Error Covariance

Formulation of Flow-dependent Assimilation

Cost function

J

$$\mathbf{T} = \frac{1}{2} \beta_n^2 \delta \mathbf{x}_{n0}^T \mathbf{B}_{NMC}^{-1} \delta \mathbf{x}_{n0} + \frac{1}{2} \beta_e^2 \delta \mathbf{x}_{e0}^T \mathbf{B}_{ENS}^{-1} \delta \mathbf{x}_{e0} + \frac{1}{2} \sum_t (\mathbf{H} \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t)^T \mathbf{R}_t^{-1} (\mathbf{H} \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t)$$

2. Climatological term

 BG covariance is given by statistics of forecast error.

Extended control variable method (Lorenc 2003)

3. Flow-dependent term

• BG covariance is estimated from ensemble forecasts.

.

• This term measures the fit based on the flow-dependent background error **in various meteorological situations.**

Impact Experiment using Real Observation Data

GPM Near-realtime Monitor (http://sharaku.eorc.jaxa.jp/trmm/RT3/index.html)

Impact Experiment using Real Observation Data

<u>GPM/DPR</u>

Corrected Ze (L2 Standard product)

- Liquid-phase: Use
- Solid-phase: Reject

Super Observation

Averaging area: 15x15 km² Thinning

Vertical interval: 500 m

Now investigating . Bias correction is needed.

- KuPR(35.5GHz)
- KaPR(13.6GHz)

after QC and thinning

Analysis Increments

Color shade: Total Precipitable Water Barbs: Surface Wind

<u>Hybrid DA</u>

Localization radius was set to 300 km.

.

Traditional DA v.s Hybrid DA

Forecast from Traditional DA

<u>TEST</u>

Forecast from Hybrid DA

Forecast

Grid spacing: 2 km

<u>TEST – CNTL</u>

Color shade: Total Precipitable Water Barbs: Surface Wind

Precipitation of Forecast

気象庁 Japan Meteorological Agency

Precipitation of Forecast

気象庁 Japan Meteorological Agency

Fractions Skill Score

Summary

- Development of Hybrid 4D-Var
 - TL/AD of cloud-microphysics scheme
 - The TL model grows the perturbation smoothly in almost processes.
 - Benefit of flow-dependent DA
 - Analysis increments based of flow-dependent
 - Improvement of precipitation forecast
- Development of space-borne radar simulator with TL/AD
 - Reflectivity of non-spherical particles
 - Model bias is larger than difference of scattering method.
- Future work
 - Enhancement of quality control and bias correction for solid particles.
 - More case studies targeting severe weather event.
 - Statistical verification of long-term.

THANK YOU FOR YOUR ATTENTION

Infrared imager 10.6 µm **Comparison of Simulation and Observation**

Shape: non-spherical, Snow-PSD: exponentioal+gamma

Observation (Himwari-8 AHI)

Infrared imager 10.6 μm Comparison of Simulation and Observation

Shape: non-spherical, Snow-PSD: exponentioal+gamma

Observation (Himwari-8 AHI)

Function of AD Model of Cloud Microphysics in Identical Twin<u>Reflectivity (KuPR)</u><u>Brightness temperature (GMI)</u>

O: Pseudo Observation points

RTTOVSCATT (rttov11.3)

Satellite: GPM, Sensor: GMI, Frequency: 1) 10.65 GHz(V), 2) 10.65 GHz(H), 3) 18.7 GHz(V), 4) 18.7 GHz(H), 5) 23.8 GHz, 6) 36.5 GHz(V), 7) 36.5 GHz(H), 8) 89.0 GHz(V), 9) 89.0 GHz(H), 10) 165.5 GHz(V), 11) 165.5 GHz(H), 12) 183.31±3 GHz, 13) 183.31±8 GHz

Gradient Vector from pseudo observation

う気象庁 Japan Meteorological Agency

.

2. Enhancement of quality control and space-borne radar simulator

- SCATDB (Liu 2008, Honeyager et al. 2016)
 - Database of scattering coefficients for non-spherical particle.

) 気象庁 Japan Meteorological Agency

(a) Columns and Plates

Flow-dependent Term

• Extended control variable method (Lorenc 2003)

Background error covariance

Mixing the climatological BG error and the ensemble estimated BG error

Preconditioning

The flow-dependent method is employed extended control variables method.