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Local NWP System
Local Forecast model (LFM)
 Horizontal resolution: 2 km
Local Analysis (LA):3D-Var Analysis 
cycle

Global NWP System
Global Spectral Model (GSM)
  Horizontal resolution:TL959(0.1875 deg)
Global Analysis (GA): 4D-Var

Meso-Scale NWP 
System
Meso-scale model (MSM)
 Horizontal resolution: 5 km
Meso-Scale Analysis (MA): 4D-Var

Operational Meso-scale NWP system in JMA
• Main purpose

– Providing disaster prevention information 
and aviation weather forecast

• Meso-Scale model (MSM) and Local Forecast Model (LFM)
– 3-ice 6-class cloud microphysics process scheme

• Prognostic hydrometeors 
– Water vapor, cloud, rain, ice, snow and graupel

• These hydrometeor profiles are needed to calculate 
reflectivity and radiance in data assimilation.

• Meso-Scale Analysis (MA)
– 4D-Var data assimilation system

• Hydrometeors are not control variables.
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Future Plan:  Hybrid-4DVar with control variable of hydrometeors



Current state of GPM/DPR assimilation at JMA
• In the operational Meso-Scale NWP system

– Traditional 4DVAR
• Climatological background error covariance
• Hydrometeors are “not” control variables.

– GPM/DPR assimilation method
• Indirect assimilation (1D+4DVAR)
• Assimilation of relative humidity profile retrieved from reflectivity

• Operational assimilation of GPM/DPR started in March 2016.
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Further Utilization of GPM/DPR
• Characteristics of DPR

– 3-D information of hydrometeors
– Sensitivity to snow particles
– Covering not only land area, but also sea area

• Benefit of the utilization of DPR in DA
– Improvement of hydrometeors reproducibility in initial time

-> Improvement of precipitation forecast 

• Useful way to achieve the goal for MSM purpose

can not be utilized in 
the current system

can not be utilized in 
the current system
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Next step of DPR assimilation

Indirect assimilation
using retrieved RH profiles

in traditional 4DVAR

Direct assimilation
using reflectivity (KuPR, KaPR) profiles

in new Hybrid-4DVAR
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Formulation of Flow-dependent Assimilation
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2. Climatological term
• BG covariance is given by 

statistics of forecast error.

3. Flow-dependent term
• BG covariance is estimated from 

ensemble forecasts.
• This term measures the fit based on 

the flow-dependent background error
in various meteorological situations.

Cost function

1. Observation term
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1-moment Cloud microphysics optimized for DA
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 Heymsfield and Iaquinta (2000)

PSD: mono-dispersion

Ice particle Snow particle

PSD: exponential + modified gamma

Mass

Bulk snow density

Mass

For midlatitude cloud (Field et al. 2007)

 Thompson et al. (2008)

T=-10 , Qs=0.2 g kg℃ -1 Ice   <--> large snow flake 

Rain and graupel particle
PSD: exponential 
Mass

Cloud particle
PSD: mono-dispersion
Mass

TL/AD of cloud microphysics are needed for 
reflectivity and cloudy radiance direct assimilation.

TL/AD of cloud microphysics are needed for 
reflectivity and cloudy radiance direct assimilation.

 kg109.6 22Dms


 311 mkg103.1  Ds

 kg100.7 23Dmi


 kg
6

3
,, Dm grgr 




 kg
6

3Dm cc 






Comparison of Simulation and Observation
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Observation (Himawari-8 AHI)

Relaxation area

Simulation
Horizontal resolution: 2 km, Lead time: 9-hour
Shape: non-spherical, Snow-PSD: exponential+gamma  10.4 μm



Test Case using Single Column Model
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Single column TL/AD model based on KiD*

Variables P(pressure), T(temperature), Qv(specific humidity),
Qx(mixing ratio of hydrometeors x) x=cloud, rain, ice, snow and graupel

Vertical resolution / number of level 160 m / 100 levels

Time step 5 sec

Initial condition Forcing 

time step

initial perturbation

Vertical velocity

* Shipway and Hill (2012)



time step time step time step time step time step

Tangent Linearization of Microphysics Scheme
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TL is almost consistent.TL is almost consistent.

Qc Qr Qi Qs Qg

time step time step time step time step time step

time step time step time step time step time step

|<-      2-hour      ->|

Fixed variables on background trajectory
• Air density and pressure
• Diffusivity of water vapor,  thermal conductivity of air 

Fixed variables on background trajectory
• Air density and pressure
• Diffusivity of water vapor,  thermal conductivity of air 

Snow error is originated from difference in ice perturbation Snow error is originated from difference in ice perturbation Nucleation is a strongly nonlinear process.Nucleation is a strongly nonlinear process.

 0xtM

   00 xxx tt MM 

xM t



Enhancement of space-borne radar simulator
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• Space-borne radar simulator
• Simplified because of reducing computation cost

– Beam: Not-bending
• Ignoring the slant beam path and beam width

– Effective particle: Rain, snow and graupel
• Ignoring cloud water and cloud ice particles

– Size distribution
• rain and graupel: Exponential distribution
• snow: Exponential + modified gamma distribution

– Particle type
• Spherical or Non-spherical particle

– Scattering calculation
• LUT ( Lorenz-Mie, DDA)
• Single scattering

20 km



Shape of snow particle for scattering 
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Type-A snowflakes in Liu(2008)

These dipoles by DDSCAT 7.3 

Spherical snow

In current method, snow particles are 
assumed as spherical particle. 

Scattering: Lorentz-Mie Scattering: DDA(Discrete Dipole Approximation)



Radar Reflectivity of Snow
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KuPR(13.6GHz)

KaPR(35.5GHz)

Spherical snow particles

Sector snowflakes

PSD: exponential + 
modified gamma
(Field et al. 2007)

Bulk density:

Small                             Large

SCT Liu(2008)

 311 mkg103.1  Ds



CFADs of radar reflectivity
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KuPR KaPR
Observation Simulation(SCT) Simulation(SPH) Observation Simulation(SCT) Simulation(SPH)

Contour frequency by altitude diagrams (CFADs)

SCT: sector of snowflakes
SPH: spherical particle of snow

SCT is weaker than SPH, however model bias is larger than 
difference of particle shape.



Tangent-linear and Adjoint of Radar Simulator
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: Tangent-linear operator
: Adjoint operator

Function of reflectivity calculation

KuPR (snow) KaPR (snow)

Similarity between                and      .

Error increases in 
low temperature and 
low mass.
(Maximum error ～ 3.e-5 dBZ)
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Formulation of Flow-dependent Assimilation
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2. Climatological term
• BG covariance is given by 

statistics of forecast error.

3. Flow-dependent term
• BG covariance is estimated from 

ensemble forecasts.
• This term measures the fit based on 

the flow-dependent background error
in various meteorological situations.

Cost function

1. Observation term
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Statistical BG Error Vertical Covariance
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CovarianceCorrelation in Jul ( sample # 8x31 forecasts ) Correlation in Jan ( sample # 8x31 forecasts )

* Cov are rescaled
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Statistical BG Error Vertical Covariance

Correlation in Jul ( sample # 8x31 forecasts ) Correlation in Jan ( sample # 8x31 forecasts )
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Covariance

hydrometeors hydrometeors

hydrometeors

* Cov are rescaled

Large correlationLarge correlation

Correlation with hydrometeors Correlation with hydrometeors 

Dependence on seasons and meteorological situations
-> We need flow-dependent BG Error covariance.
Dependence on seasons and meteorological situations
-> We need flow-dependent BG Error covariance.
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Simplification of Background Error Covariance
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Rank reduction
• Horizontal velocity

• Weak correlations between δu and δv
• Vertical velocity

• Effect is lost on early time.
• Pressure

• Substituted with hydrostatic pressure

Analysis variables

Additional variables in this study
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Formulation of Flow-dependent Assimilation
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2. Climatological term
• BG covariance is given by 

statistics of forecast error.

3. Flow-dependent term
• BG covariance is estimated from 

ensemble forecasts.
• This term measures the fit based on 

the flow-dependent background error
in various meteorological situations.

Cost function

1. Observation term

Extended control variable method 
(Lorenc 2003)
Extended control variable method 
(Lorenc 2003)
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Impact Experiment using Real Observation Data
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2016/09/19 00:46:30

2016/09/19 00:49:00

GPM Near-realtime Monitor (http://sharaku.eorc.jaxa.jp/trmm/RT3/index.html)



Impact Experiment using Real Observation Data
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GPM/DPR 
   Corrected Ze (L2 Standard product)

 Liquid-phase:  Use
 Solid-phase:  Reject

Super Observation
   Averaging area: 15x15 km2

Thinning
  Vertical interval: 500 m

• KuPR(35.5GHz)
• KaPR(13.6GHz)

Now investigating .
Bias correction is needed.

Now investigating .
Bias correction is needed.

after QC and thinning



Analysis Increments
Hybrid DA
Climatological(50%)+Ensemble(50%)

Traditional DA
Climatological(100%)+Ensemble(0%)

Localization radius was set to 300 km.

Nm: 12+1
Grid spacing: 5 km
Nm: 12+1
Grid spacing: 5 km

Color shade: Total Precipitable Water
Barbs: Surface Wind
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Assimilation window: 3-hourAssimilation window: 3-hour



Traditional DA v.s Hybrid DA
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Dry Dry 

WetWet

CNTL
Forecast from Traditional 
DA
TEST
Forecast from Hybrid DA

Forecast
Grid spacing: 2 km
 
TEST – CNTL 
Color shade: Total 
Precipitable Water
Barbs: Surface Wind



Precipitation of Forecast 
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Traditional DA Climatological(100%)+Ensemble(0%) Observation
Lead time: 9-hour



Precipitation of Forecast 
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ObservationHybrid DA Climatological(50%)+Ensemble(50%)

Lead time: 9-hour



Fractions Skill Score
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CNTL: Traditional DA
TEST: Hybrid DA Improvement of heavy rain rateImprovement of heavy rain rate

Under estimation of weak rain 
on largescale
Under estimation of weak rain 
on largescale

perfect skill



Summary
• Development of Hybrid 4D-Var

– TL/AD of cloud-microphysics scheme
• The TL model grows the perturbation smoothly in almost processes.

– Benefit of flow-dependent DA
• Analysis increments based of flow-dependent
• Improvement of precipitation forecast 

• Development of space-borne radar simulator with TL/AD
– Reflectivity of non-spherical particles
– Model bias is larger than difference of scattering method.

• Future work
– Enhancement of quality control  and bias correction for solid particles.
– More case studies targeting severe weather event.
– Statistical verification of long-term.
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Infrared imager 10.6 μm
Comparison of Simulation and Observation
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Observation (Himwari-8 AHI)

Relaxation area

Similar brightness

F05
Lead time: 9-hour

Shape: non-spherical, Snow-PSD: exponentioal+gamma



Infrared imager 10.6 μm
Comparison of Simulation and Observation
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Observation (Himwari-8 AHI)

Relaxation area

Similar brightness

F07M
Lead time: 9-hour

Shape: non-spherical, Snow-PSD: exponentioal+gamma



Function of AD Model of Cloud Microphysics in Identical Twin

True-Guess

Guess
Reflectivity (KuPR)

True-Guess

Guess
Brightness temperature (GMI)

RTTOVSCATT (rttov11.3)
Satellite: GPM, Sensor: GMI, Frequency: 1) 10.65 GHz(V), 2) 10.65 GHz(H), 3) 
18.7 GHz(V), 4) 18.7 GHz(H), 5) 23.8 GHz, 6) 36.5 GHz(V), 7) 36.5 GHz(H), 8) 89.0 
GHz(V), 9) 89.0 GHz(H), 10) 165.5 GHz(V), 11) 165.5 GHz(H), 12) 183.31±3 GHz,  
13) 183.31±8 GHz

○: Pseudo Observation points
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Gradient Vector from pseudo observation
Reflectivity Brightness temperature 

Gradient of water vapor, cloud and ice are given by AD model.

Saturated layer

Observation Observation

Gradient vector

Adjoint of solid-phase processes 
propagate the observation 
information to upper atmosphere.

Qc

Qr

Qi

Qs

Qg

Qv
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Gradient Vector from pseudo observation
Reflectivity Brightness temperature Observation Observation

Gradient vector

Adjoint of solid-phase processes 
propagate the observation 
information to upper atmosphere.

Qc

Qr

Qi

Qs

Qg

Qv
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Saturated layer

Gradient of water vapor, cloud and ice are given by AD model.
AD of Microphysics Processes with ice and water vapor.  
• Autoconversion_AD: δQs, δQi
• Nucleation_AD: δQv, δQi
• Evap/Dep_AD: δQv, δQr, δQi, δQs, δQg
• Melting_AD: δQr, δQi
• Freezing_AD: δQi, δQc
• Collection_AD:  δQc , δQi, δQs, δQg

eg.
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2. Enhancement of quality control and space-borne radar simulator

• SCATDB (Liu 2008, Honeyager et al. 2016)
– Database of scattering coefficients for non-spherical particle.
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13GHz 36GHz

Liu (2008)



Flow-dependent Term
• Extended control variable method (Lorenc 2003)
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Spatial localization

Control variables Extended control variables

Cost function

Background error covariance
  Mixing the climatological BG error and the ensemble estimated BG error

Preconditioning

The flow-dependent method is employed 
extended control variables method.

The analysis variable is given by control 
variable and extended control 
variables.eENSenNMCn
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