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COSMO NWP Model
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 It is constructed from physical 
principles. 

 It is started from initial 
conditions that are constructed 
with data assimilation 
techniques. Some spin-up is 
expected at the beginning 
(adaptation to a physical 
consistent state). 

 It takes 1.5 hours to produce 
the first prediction. Reliable for 
the short to mid range 
prediction (1.5-24h).
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Nowcasting
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 It is constructed from 
interpolation of the Radar 
fields.

 It is usually better than NWP 
for the very short term leading 
times (up to 3 hours).

 It takes only 5 minutes to 
produce the first prediction. 
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 In order to create a product that combines Nowcasting and NWP product, we need to 
bring NWP closer to the radar observations, specially at the analysis time t0

 At the same time we cannot degrade the quality of the NWP
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Some score for 
convective systems
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Direct Assimilation of Reflectivities

 The assimilation of radar reflectivities in COSMO is performed via Latent Heat 
Nudging (LHN).

 LHN heats/cools the atmosphere based on the comparison of model precipitation and 
the radar-precipitation scan.

 The LETKF assimilation system COSMO-KENDA can directly assimilate 3D radar 
scans. COSMO-KENDA is currently used in DWD to assimilate all other observation 
systems.

 The LETKF corrects the hydrometeors specific densities based on reflectivity 
measurements. It has thus the potential to produce a more realistic reflectivity picture 
at analysis time, which could help for the seamless transition between Nowcasting 
and NWP.
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Our tool: Basic Cycle (BACY)
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 1h Cycle with hourly forecast during the convective period  (10 -18). The forecasts run for 
6 hours.

 COSMO-DE setup (2.8km) with version 5.4h.

 Assimilation with 40 ensemble members. Forecasts with 20 ensemble members.

 Simulations from 27.05.2016 until 02.06.2016 (7 days): In total 1323 forecasts (not 
independent)

 We evaluate the data during the experiment. No need to save huge amount of data.

Cycle 10.00 18.00

20+1 Forecasts
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What we have learned

 Spatial Averaging: we use “superobbed” data with a spatial resolution of 10 km.

 Temporal Thinning: we assimilate only the radar scan measured at the analysis time 
(every hour). All other radar scans (every 5 minuets) are not used.

 Ensemble inflation: in our setup relaxation to prior spread (RTPS) is better than 
relaxation to prior perturbation (RTPP). 

 Observation error estimated with DeRozier statistics.
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Scores based on reflectivities

 We use scores based on Radar composites. Improving score based on 
reflectivities can help to bridge the gap between Nowcasting and NWP.

 The Fraction Skill Score (FSS) assess, the skill of predicting convection at a 
spatial scale (here 30 km) for a given threshold (Roberts & Lean, 2008)

 The Brier Score measures the accuracy of the probability prediction of an 
ensemble for a given threshold. Not very reliable for rare events (very high 
reflectivities).
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COSMO-KENDA vs LHN (Reflect verif.)
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 KENDA shows a small advantage in the first two-
three forecast hours. 

 Higher reflectivities seem to be better captured 
by LHN. Specially strong thresholds over 45 dBZ 
are much better.
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COSMO-KENDA vs LHN (Reflect verif.)
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However, some convective cells are not met by any 
ensemble member,

 The LETKF cannot build a convective cell, if this is missing in all members. This is a 
disadvantage of LETKF over Latent Heat Nudging.

Observation Deterministic Run (assimilation) P > 30 dBZ (assim)
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, which might lead to missing severe storms

 Due to a small number of members (N=40 in this case), assimilating some storms 
becomes random. 

Observation Deterministic Run (1h forecast) P > 30 dBZ (1h forecast)
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Automatic Bubbles
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 We trigger warm bubbles in regions where the radar composite shows a convective cell, 
but there is none in the model. We check every 15 minutes.

 Bubbles warm a region ~10x10kmx2km with averaged heating rate ~0.001 K/s, during 15 
minutes.

 This is not latent-heat nudging. Once the bubble is triggered, the convective cell is free to 
evolve depending on the local meteorological conditions. Some bubbles do not develop 
into a convective cell. 
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The algorithm triggers a small convective cell,
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Observation Deterministic Run (assimilation) P > 30 dBZ (assim)

ISDA 2018, München



which develops into a larger cell
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 The cell develop stronger in some members, as shown that not all members achieve 
more than 30 dBZ

Observation Deterministic Run (1h forecast) P > 30 dBZ (1h forecast)
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Other examples (1h forecast)

Observation Base Bubbles
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KENDA vs LHN (Reflect verification)
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 KENDA shows a small advantage in the first two-
three forecast hours. 

 Higher reflectivities (over 45 dBZ) seem to be 
better captured by LHN. This might be a problem 
for the identification of convective cells.
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KENDA vs LHN (Now with bubbles.)
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 Bubbles correct the high reflectivities. 

 All other scores change very little.

ISDA 2018, München



Standard verification
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0.1 mm/h

1.0 mm/h

5.0 mm/h

LHN KENDA

Precipitation verification (FSS) Surface Stations verification (CRPS)

 KENDA performs better for the surface verification. LHN performs slightly 
better for precipitation. 
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X
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Direct 
assimilation of 
3D radar data

Assimilation of 
(radar) objects

Assimilation of 
texture/features

direct

indirect

 Determine object-related 
properties as „averages“ in a 
local neighbourhood around a 
fixed location X in space

 e.g. #objects > thresh, area > 
thresh, mean distance betw. 
obs & sim objects, lightning 
activity, Echo tops/base

 Do this both for obs and 
simulations

 Assimilate this „gridded“ 
information locally at X

Beyond direct assimilation (C. Welzbacher)
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Conclusions

 The assimilation of 3D Radar Reflectivities with our LETKF system COSMO-
KENDA shows promising results. In some scores the LETKF is better than the 
currently operational Latent-Heat Nudging (only one week).

 

 Warm bubbles help to assimilate severe convective systems that are missing 
otherwise. The bubbles improve scores related to higher reflectivities.

.

Thank you!
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Step by step
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Frequency bias
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Fraction Skill Score (Roberts & Lean, 2008), here applied for reflectivities. 
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Scores based on reflectivities

Pobs= 6/25 Pfcst = 6/25

 The FSS assess the skill of predicting 
convection at a spatial scale for a given 
threshold (here 30 km).

 The Brier Score measures the accuracy of 
the probability prediction of an ensemble.

SINFONY 2017, Offenbach
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Improving the TKE Cycling
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 TKE is currently initialized at each COSMO start, which happens every cycle (each1h)

 The LETKF is a local procedure that produces too much shear, and therefore too 
much TKE.

 TKE is now cycled (no initialization)

 At the same time the turbulent mixing length scale was set to a more physical value 
(von lm = 150 m zu lm = 500 m)

Current

New

 

 

Time Step [25 s]



Assimilation nur stündlicher Daten
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 Wir assimilieren jetzt die Radardaten nur für die Analysezeit (statt alle 5 Minuten)

 Das ist eine Datenreduktion um Faktor 12, die für Radar-Winde schon einen positiven 
Effekt gezeigt hat

 Wir benutzen auch die neuen, korrigierten Radardaten

5 min Daten 1 h Daten
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