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development
GSI 3DEnVar:  
Wang, Parrish, Kleist, Whitaker, 2013, MWR

GSI 4DEnVar: 
Wang and Lei, 2014, MWR

Cost effective method to  increase ensemble 
size in GSI EnVar: 
Huang and Wang 2018, MWR

Hurricane

Developed fully cycled GSI hybrid DA system 
for US operational convection allowing 
hurricane prediction system HWRF: 
Lu, Wang, Tong and Tallapragada, 2017, MWR
Lu, Wang, Li, Tong, Ma, 2016, QJRMS

Sample of recent work:
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https://en.wikipedia.org https://www.nssl.noaa.gov

https://www.stormtours.com

What got us there?
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Importance of radar for convective scale 
observations and NWP 

One of the most important observation platforms that provide high temporal 
and spatial resolution sampling of convective scales.
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• Multi-function phased array 
radar replaces uniform 
scanning and enables targeted 
observations 

New radar technology pushes limits for 
radar DA 

• PX solid-state, dual- 
polarization X-band radars 
by OU ARRC (Kurdzo et 
al. 2015)

• 30-m range resolution and 
1.4 – 1.8° beamwidths 

• 10 elevation angles in 10 
– 20 s

• Assimilating movies?!

20 May 2013 Moore, Oklahoma Tornado

https://www.nssl.no
aa.gov
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• Require unique observation operators that are often complex and nonlinear (e.g., reflectivity, 
Dual pol radar variables)

• Both prior (e.g. hydrometeors) and observation errors are highly non-Gaussian

• Accurate cross-variable covariance is especially important

• Heavily rely on quality of microphysics schemes in numerical models – treatment of model 
errors

• Data are in much  higher spatial resolution than the typical NWP model and in much higher 
temporal resolution than typical DA frequency – push limit

• New radar technology such as PAR allows adaptive sampling – targeted observations for radar 
and convective scale NWP push limit

• Systems shorter lived and with shorter predictability

• Convective scale prediction is a multi-scale problem, requiring an accurate estimate of both 
the convective scale details and the supporting mesoscale/synoptic scale environment.

Challenges for convective scale radar data 
assimilation



GSI-based EnKF-Var hybrid DA system further developed for 
various US convection-allowing prediction systems with direct 

radar DA capability 
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GSI-based Var/EnKF/3/4DEnVar/ 
Hybrid

HRRR (<=18h)
Updated hourly

WoF (<=1hr)
e.g. tornadic 

supercell 

NAM CONUS 
(<=60h)

Updated 6-hourly

Add direct 
radar DA 
capability

GSI: US operational data assimilation system
WoF: Warn on Forecast
HRRR: High Resolution Rapid Refresh
NAM CONUS: North American Mesoscale Forecast system -  Continental US

In collaboration with NOAA EMC (Carley), GSD (Dowell) and NSSL (Wicker) colleagues



GSI-based EnKF-Var hybrid DA system further developed for 
various CONUS convection allowing prediction systems with 

direct radar DA capability
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EnKF

EnVar

• Both the GSI EnKF and GSI EnVar components are extended
• Instead of using the coarser resolution global ensemble in EnVar like the 

operational HRRR, the new EnVar system ingests convection allowing model’s 
own EnKF ensemble.
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 Direct radar (Vr and dBZ) DA capability is developed for GSI EnKF and GSI 
EnVar

• Radial velocity and reflectivity observation operators are implemented.

• The hydrometeor-related prognostic variables (rainwater, snow, graupel 
mixing ratios) are added as state variables.

• The vertical velocity are added as state variables.

• Direct reflectivity assimilation capability is developed as opposed to using 
the operational Cloud Analysis (CA) method, which is a separate and 
empirical approach.

GSI-based EnKF-Var hybrid DA system further developed for 
various CONUS convection allowing prediction systems with 

direct radar DA capability
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Outline

 Part I (Wang Y. and X. Wang, 2017, MWR)
• Issues of direct radar reflectivity assimilation in EnVar associated with the 

nonlinear operator 
• Propose a method to directly assimilate radar reflectivity without tangent 

linear and adjoint of the nonlinear observation operator in GSI EnVar system
• Experiment with May 8th 2003 OKC tornadic supercell to demonstrate the 

method

 Part II (e.g. Duda, Wang, Wang, Carley, 2018)
 Systematic experiments to test the EnVar with the new direct reflectivity 

assimilation in the context of US CONUS operational convection allowing 
regional prediction system HRRR/NAM CONUS by comparing with the 
operational Cloud Analysis (CA)

 Part III (Wang Y. and X. Wang, 2018)
• Extension of dual resolution GSI based EnVar for sub-kilometer (<1km)  

analysis and prediction 

 Part IV (Kerr and Wang, 2018)
• Ensemble based targeted observation applied for the Multi-function phase 

array radar (MPAR)



PART I 



Issue with TL of nonlinear reflectivity operator in EnVar
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Wang and Wang 2017, MWR, 145,  1447- 1471

 H(qr, qs, qg) = ZdB = 10logZe

Ze = Zr + Zs + Zg

• Nonlinear radar reflectivity operator

• GSI-based EnVar cost function (Wang 2010, MWR)

10 1.75
g gZ 4.33 10 (ρq ) �
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Wang and Wang 2017, MWR

• Use hydrometeor mixing ratio as state variable

Issue with TL of nonlinear reflectivity operator in EnVar

 Large values of TL of the nonlinear reflectivity associated with  the small hydrometeor 
mixing ratios lead to large differences of cost function gradients contributed by Vr and 
Ref., which prevents efficient convergence and therefore under-estimates the 
hydrometeor increments.  

 This issue disallows simultaneous assimilation of Vr and Ref.
 Issue true for Var (J. Sun mentioned in early 4DVar work), not just EnVar

H(qs,qr,qg)
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Wang and Wang 2017, MWR

• Use hydrometeor mixing ratio as state variable

Issue with TL of nonlinear reflectivity operator in EnVar

 The TL of the reflectivity operators itself further contributes to spuriously 
small hydrometeor increments

y H(x x)H(x) Hx

H(qs,qr,qg)
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Wang and Wang 2017, MWR

• Using logarithm of hydrometeor mixing ratio as state variable    

Issue with TL of nonlinear reflectivity operator in EnVar

• Fixes the cost function gradient issue 

H(log(qs), log(qr), log(qg))
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 However, it produces anomalously large hydrometeor increment 
partly due to the transform to and from the logarithmic space.

 Ad hoc thresholding may help, however solution is 
fundamentally incorrect.

Wang and Wang 2017, MWR

• Use logarithm of hydrometeor mixing ratio as state variable 

Issue with TL of nonlinear reflectivity operator in EnVar

H(log(qs), log(qr), log(qg))
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Wang and Wang 2017, MWR

• Use logarithm of hydrometeor mixing ratio as state variable 

Issue with TL of nonlinear reflectivity operator in EnVar

 The TL of the reflectivity operators itself further contributes to spuriously 
large hydrometeor increments

y H(x x)H(x) Hx

H(log(qs), log(qr), log(qg))
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Wang and Wang 2017, MWR

GSI-based EnVar without tangent linear (TL) and adjoint of the 
nonlinear reflectivity operator

• A new method extending state variables by directly including 
reflectivity as state variable is proposed: 

• No reflectivity operator appears in cost function or 

• Gradient issues fixed -  allow simultaneous assimilation of Ref. with 
other observations 

H(ZdB)
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Wang and Wang 2017, MWR

GSI-based EnVar without tangent linear (TL) and adjoint of the 
nonlinear reflectivity operator

• A new method including reflectivity as state variable is 
proposed

• In this method, no TL of the reflectivity 
operator exists .  Hydrometeor is 
related to reflectivity following the 
nonlinear relationship.

H(ZdB)



May 8th 2003 OKC Tornadic Supercell
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• An isolated supercell case that produced F-4 intensity 
tornadoes in Moore and Oklahoma City (OKC) during about 
2210—2240 UTC.

• Supercell maintained well beyond 2300 until about 0000 UTC. 

Path of the May 8, 2003 
Moore-South OKC Area 
Tornado

22:00 UTC 08 May
http://www.srh.noaa.gov



Experiment design

• Model: WRF-ARW 2km

• Observation: radar radial wind 
and reflectivity from KTLX

• IC and LBC ensemble: A 45-
member ensemble downscaled 
from a mesoscale ensemble at 
2100 UTC.

Wang and Wang, 2017, MWR
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RMS fit to obs. during DA cycling

Blue: New:
Green: 

Red:

• Both radial velocity and reflectivity are under-fitted for using hydrometeor 
as state variables

• Reflectivity is over-fitted using the log(hydrometeor) as state variables

ZdB
qg

log(qg)
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m/s m/s m/s

1 hour forecast: w and vorticity at 4km

New: extend state 
variable with 
reflectivity

Use log transform 
(q_hydrometeor) as 

state variable

Use 
q_hydrometeor as 

state variable

New: log(qg) qgZdB
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1 hour forecast of neighborhood ensemble probability (%) 
of vorticity at 150 m AGL  

New: ZdB log(qg) qg



Graupel (qg) analysis

(g/kg)

New: log(qg) qgZdB



PART II



Implementation and experiment in 
operational HRRR/NAM CONUS

Wang Y., Wang, Carley 2018, MWR 
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Domain:
•Resolution: 3 km
•Grid: 1621 X 1121 X 50
•Large CONUS domain in 

operational HRRR context

Observations:
• Conventional obs. are 

assimilated hourly for 6 
hours

• Radar data are assimilated 
sub-hourly/hourly

IC and LBC ensemble are 
provided by recentering GEFS 
(20) and SREF (20) 
perturbations to GFS-ctl



 EnVar overall verifies 
much better than CA.

 CA does provide some 
benefit over not 
assimilating radar 
reflectivity at all, 
however, but only a few 
hours’ worth.

NETS – neighborhood 
version of ETS using 
50 km circular radius

30

GSI-EnVar direct reflectivity assimilation vs cloud 
analysis (CA)

Duda, Wang, Wang, Carley, 2018a, MWR

20dBz

30dBz

40dBz

0.254mm

2.54mm

12.7mm
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EnVar (f00) cloud 
analysis 

(f00)

Spurious convection is better suppressed by the EnVar.

obs. reflectivity key:

30 dBZ
50 dBZ

Why GSI EnVar is better than CA? 
Duda, Wang, Wang, Carley 2018a, MWR

00 UTC 07 July 2016
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Why GSI EnVar is better than CA? 

cloud 
analysis

EnVar

 Weak vertical motion from 
CA

 While CA is able to add 
reflectivity, it is incapable of 
providing a consistent update 
of the dynamical field (e.g., 
w) itself.  

 EnVar can update other 
thermo/dynamical 
variables consistently 
through cross variable 
correlations

17 June 2016



 1-hr rotation tracks
OBS: MRMS RotationTrackML60min 
product (3-6 km AGL maximum 
azimuthal shear from Doppler velocity, 
measured in 10-3 s-1), integrated over 
the past hour
FCST: hourly-maximum UH

 Diurnal cycles of the number of 
rotation tracks verified well.

 More tracks than observed at early 
lead times

New verification: Object based verification of 
rotation tracks

33

OU MAP 2017 HWT real time CONUS DA and 
ensemble 

Duda, Wang, Wang, Carley 2018b, MWR

Number of rotation tracks



PART III 
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• Early study has demonstrated the need for ~100m possibly ~10’s m grid spacing 
to fully resolve convective motions (Bryan et al. 2003). Explicitly forecasting of the 
tornado like vorticies needs to use a finer resolution (e.g., dx<1km).

• State of the art radar provide measurements in very high resolution.

• Most early studies simulate or predict tornado or tornado like vortices by running 
sub-km model initialized by downscaling a coarse resolution analysis (dx>= 1km). 

• Is there a need to run DA at finer resolution? What is the impact of initializing with 
a finer resolution analysis (dx<1km)? Is there a cost effective way to do this?

• Given the large expense of running all ensemble members at sub-kilometers in 
EnVar, the dual resolution EnVar  is further extended in GSI where the analysis 
is produced at sub-kilometer (e.g., 500m) whereas the ingested ensemble is still at 
lower kilometer resolution (e.g., 2km). 

GSI-based dual resolution EnVar for sub-
kilometer analysis and prediction

Wang Y. and X. Wang 2018, MWR



• Dual resolution EnVar cost function
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GSI-based dual resolution EnVar formula

L is the interpolation operator, which is used to interpolate 
from low-resolution (LR, e.g. 2km) to high-resolution (HR, e.g. 
500m) space.



Experiment design
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• Both SR_2km and DR ingest the ensemble at 2-km resolution during DA
Experiments Description

SR_2km
Analysis produced at 2-km resolution ingesting 2-km ensemble. 
Free forecast at 500 m resolution initialized from downscaled 2-km 
analysis

DR
Analysis produced at 500-m ingesting 2-km ensemble through dual 
resolution capability.  Free forecast at 500 m resolution

downscale



Composite maximum sfc vorticity and 10-m wind 
improved by dual resolution EnVar

SR_2kmSR_2km DRDR

s-1

SR_2kmSR_2km DRDR

Uh max=41.4 m/s (EF1)Uh max=36.6 m/s (EF0)

Sfc
vorticity

10-m 
wind

• The predicted vorticity is 
enhanced after 20-min 
forecast in DR. Its vorticity 
evolution is much more 
consistent with the reality 
than SR_2km.

• DR is able to predict tornado 
strength sfc wind with longer 
duration and greater intensity 
(≥ EF1).

m/s

EF0 ≥29 m/s EF1 ≥38.4 m/s

Vorticity begins to 
decay at this time

F0/F1

F2
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Vertical velocity (shaded) 
and vertical vorticity 
(contour) at 2 km AGL

Surface equivalent 
potential temperature 
(shaded), reflectivity (blue 
contour), rear flank gust 
front (RFGF; black thick 
line) 

• Stronger and broader midlevel downdraft (green box) in DR (left) than SR_2km 
(right) over the rear-flank region.

• Stronger outflow (red box) surge trailing the RFGF in DR than SR_2km.

DR@2km AGL SR_2km@2km AGL

What are the differences in the final analysis?
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Exp-UVW

Exp-UVWT DR

s-1

 Detailed dynamical diagnostics and sensitivity experiments suggest 
• the timing of the weakening and re-intensification is affected by the strength of 

the downdraft in the analysis
• the longevity and strength of the sfc vorticity is determined by the magnitude of 

cold pool in the analysis; 

How do the differences in the analysis 
contribute to sfc vorticity forecast difference?   

Exp-T



PART IV 



Multi-function PAR and targeted 
observations

Compared to the conventional, uniform scanning by WSR-88D radars, 
the flexibility inherent in MPAR enables “adaptive sampling” or 
alternatively termed as “targeted observations” 

https://www.nssl.noaa.gov



t0 t1 t2

Desired time of 
observation 

collection and 
assimilation

Optimal observation 
strategy at t1 is 
predicted at t0

Forecast time of 
interest

Radar Targeted Observations – push 
limit for DA!
Kerr and Wang 2018



OSSE test-bed: Three Scan Strategies

To what extent, assimilating the full 
volume scan improves upon 
assimilating partial scans?

For the two partial scans, 
when/where assimilating one 
strategy is better than the other?

Would targeting algorithm be able to 
predict their impacts?
 

Full Volume

Low Level Upper, 
maximum 
updraft 
intensity 
level



Ensemble targeted observation 
algorithm

 The algorithm is derived from ensemble DA theory. The idea is to select the 
observation strategy that is predicted to reduce the forecast error variance 
the most. One key element is to use ensemble to estimate correlation over 
time (Bishop et al. 2001; Torn 2014)

 Push the limit for ensemble based radar DA:
 Nonlinearity
 Sampling errors to estimate time correlation



Radar location

Black: Reflectivity > 20 dBZ
Green: Updraft > 5 m s-1

Forecast metric: 30min 0-1km UH 
forecast

Blue dots represent locations of 
radial velocity observations from a 
max updraft velocity region scan that 
are determined by the method as 
being impactful

Note how the observations are 
cluttered along the edges of the right 
mover updraft “tangential” to radar 
beam

Use ensemble to predict if/how 
observations will impact a forecast 

metric



Actual error variance reduction

This shows how various observation sets affect the forecast metric, 
0-1 km updraft helicity (“actual” error variance reduction)

Black: full scan
Blue: low levels

Green: max updraft intensity level



At t0, do we have an idea of these future observation 
impacts?

How well does the targeting algorithm 
predict observation impacts?

Black: full scan
Blue: low levels

Green: max updraft intensity level

Solid: actual
Dashed: estimated
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Summary and Remarks

For direct reflectivity assimilation in EnVar, a method without tangent linear (TL) and adjoint of 
the nonlinear operator is developed to solve the issues associated with the TL of the 
reflectivity operator in EnVar.

 Idea maybe useful for observations with complicated operators where TLA may not be easy to 
develop or observation operators sharing similar issue as described here (e.g. space radar, 
dual pol variables, precipitation).

With this approach, 4DEnVar is not only TLA free for forecast model, but also TLA free for 
nonlinear obs. operator. 

  Issue is specific for Var, not applied for EnKF. 

 Idea of extending state to include observed variables analogous to state augmentation of 
parallel implementation of serial EnKF but for addressing different issues.

 Experiment with the May 8 tornadic supercell case shows that strong updraft and vorticity 
are better maintained using the new method than using hydrometeor mixing or log 
transformed hydrometer mixing ratio as state variables.

 The method is implemented in operational HRRR and NAM-CONUS and found to improve 
precipitation forecast as compared to the operational cloud analysis.

 Sub-km analysis is useful and dual-resolution GSI-EnVar provides a cost effective means: 
Dual resolution GSI EnVar is further extended for sub-km analysis, which is found to be 
critical on the timing of weakening and re-intensification, and on the longevity and strength 
of the TLV  for the May 8 case.

 Real time targeted observations for radar and convective scale NWP is possible.
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Ongoing and future work

• Research and development on multi-scale data assimilation.
• Complementary assimilation of GOES-R cloudy radiances and 

ground based radar observations.
• Continue research and development to treat nonlinearity issue.

Kay and Wang, 2018, MWR

EnKF Particle Filter
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Backup slides 



How well does the targeting algorithm 
predict observation impacts?

Scatter plot illustrates trend in 
actual error reduction with 
estimated error variance 
reduction for various t1 and t2 

Results suggest the targeting 
algorithm capable of 
distinguishing low impact 
strategy vs high impact 
strategy 

Further testing parameters 
and increasing sample size
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