Data Assimilation for a New Stochastic Shallow Water Model
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Introduction

We investigate a data assimilation problem consisting of a two-dimensional
signal - the Stochastic Rotating Shallow Water (SRSW) model - and
an observation process corresponding to pointwise measurements of the
pressure field between 30 and 60 degrees north latitude. The SRSW model
successfully addresses the unresolved processes issue. |t models the
motion of a compressible shallow fluid below a free surface - a type of fluid
that has close analogues to the atmosphere. In the SRSW model, the
evolution of a two-dimensional rotating system is represented by a system of
stochastic partial differential equations. The deterministic part of the SPDEs
consists of a classical rotating shallow water system, while the stochastic part
involves a transport-type noise. The resulting stochastic system preserves
important physical properties of the original deterministic equations.

Stochasticity into Shallow Water Equations

Deterministic - velocity form:
d(eu+ R) — udt x curl(eu+ R) + V(%Mz + k) dt =0
Stochastic - velocity forml*.

edu — dy; x curl(eu + R) + V(Z{-’i o dW/ - (eu + R)> = V( — g\u|2 — k) dt

where € is the Rossby number, u is the horizontal fluid velocity vector, h is the
thickness of the fluid, w = Z - curl (eu + R) is total vorticity, Z is a unit vector
pointing away from the centre of the Earth, R is the vector potential of the
zero divergence rotation rate about the vertical direction, k := %E and F is the
Froude number.

Motivation

The weather and climate system is mostly represented by large-scale patterns,
but previous studies have shown that specific small-scale physical mechanisms
have a strong impact on the large-scale phenomena. The introduction of
stochasticity into ideal fluid dynamics provides highly efficient tools
when trying to mimic the small-scale physical processes which generally remain
unresolved in a purely deterministic framework. Our aim is to investigate the
well-posedness of a mathematical system dealing with these issues and to
implement it in real-world applications. This will lead to more precision in
weather prediction techniques and climate change issues.

The &; vector fields

In the SRSW model the velocity vector field is perturbed by a transport-type
noise and vorticity is transported along the stochastically perturbed
trajectory[4]

dy; = udt + Z.f,-o dW!,

where W/ are independent Brownian motions.

The &; vector fields are divergence-free, time-independent, derived from the
underlying physics and they correspond to spatial correlations defined by a
velocity-velocity correlation matrix. These parameters can be estimated by
comparing the fine grid and the coarse grid Lagrangian trajectories. It has
been proven recently in [1] that for an incompressible fluid this spatial
structure can be estimated from data in such a way that an ensemble of this
type of stochastic paths will successfully track the large-scale behaviour of the
original deterministic system.

Data Assimilation for the Stochastic Rotating Shallow Water Model

Our research is intended to provide an analysis of a data assimilation problem where the signal satisfies the following SPDE:

d(eu+ R) — (u x curl(eu + R))dt + Z <(§, -V)(eu+ R) + (eu+ R) - V§i> o dW/ = V( — %\u\z — k> dt

dh+V - (hu)dt + ) (V- (&h)) o dW/ =0

dg + (u-Vq)dt+ ) (&-Vq)odW, =0

where g = w/h represents potential vorticity. Mathematical well-posedness of the vorticity equation in the 3D case has been proven in [2]. The well-posedness for
the 2D case is now being prepared in [3] using different techniques. The observations are pointwise measurements corresponding to the pressure field between 30
and 60 degrees north latitude, collected using commercial aircraft (DWD). In the first phase we use an ideal simulation of the truth, when the model is run at fine
resolution for 500 time steps. The solution has the following form (zonal velocity, meridional velocity, pressure):

Wl VI - 300
yis T jene 225 50 1 '

50-$: @

40 -

150 40'ﬂ

v N oy : AN : ) g
e gl gl gtoraey o -
- O W il o i ' b & 0
. - : ‘. {' 20 -...
20 ® : - . er {ﬁ A A _75 ¥
) ‘

b4 .

2400
1200

—1200
—2400
—-3600
—4800
—6000

0 100 200 300 400 500 0 160 260 360

\ s N  TIEIY B W (1Y - NP a il M 7 1 |
460 560 0 100 200 300 400 500

The data assimilation process is then performed for 500 ensemble members, 200 time steps, using 5 observations and a standard particle filter:
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