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ABSTRACT

Data assimilation (DA) methods require an estimate of observation error covariance R as an external pa-
rameter that typically is tuned in a subjective manner. To facilitate objective and systematic tuning of R within
the context of ensemble Kalman filtering, this paper introduces a method for estimating how forecast errors
would be changedby increasing or decreasing each element ofR, without a need for the adjoint of themodel and
the DA system, by combining the adjoint-based R-sensitivity diagnostics presented by Daescu previously with
the technique employed by Kalnay et al. to derive ensemble forecast sensitivity to observations (EFSO). The
proposed method, termed EFSR, is shown to be able to detect and adaptively correct misspecifiedR through a
series of toy-model experiments using the Lorenz ’96 model. It is then applied to a quasi-operational global DA
system of the National Centers for Environmental Prediction to provide guidance on how to tune the R. A
sensitivity experiment in which the prescribed observation error variances for four selected observation types
were scaled by 0.9 or 1.1 following the EFSR guidance, however, resulted in forecast improvement that is not
statistically significant. This can be explained by the smallness of the perturbation given to the R. An iterative
online approach to improve on this limitation is proposed. Nevertheless, the sensitivity experiment did show
that the EFSO impacts from each observation type were increased by the EFSR-guided tuning of R.

1. Introduction

Data assimilation (DA) methods produce the best
estimate of the current state of a dynamical system by
combining the background and observations with an
‘‘optimal’’ weight. The optimal weight, denoted K, is
determined, implicitly (in variational methods) or ex-
plicitly [in ensemble Kalman filters (EnKFs)], based on

the background- and observation-error covariances,
denoted, respectively, by B and R. An accurate specifi-
cation of B and R is of vital importance, and sev-
eral methodologies [e.g., EnKFs, ensemble variational
methods (EnVar), or ensemble–variational hybrid
methods] have been developed that allow us to use an
adaptively estimated flow-dependent B. However, in
most DA methods that are in current use, R remains an
external parameter that needs to be prescribed a priori
and thus is subject to empirical tuning. In this paper we
focus on how to determine R.
Reflecting the crucial importance of correctly speci-

fying R, a considerable amount of effort has been put
forth over the decades toward accuratelymodeling it. AsCorresponding author: Daisuke Hotta, dhotta@mri-jma.go.jp
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1. Motivation
Every standard DA textbook starts by assuming that•

!" ∼ $ !%&'(, * , +, ∼ $ +%&'(, -
as if B and R are known.
However, • B and R are unknown external parameters that, 
in practice, have to be somehow estimated, often subject 
to empirical/subjective tuning. In this study we focus on 
how to estimate R.
Standard methods to estimate • R rely on residual statistics 
combined with some ad-hoc assumptions:
- Hollingsworth and Lönnberg (1986): assume 
diagonality of R.
- Desroziers et al. (2005): assume optimality of the 
currently-tested DA system; iteratively correct if 
diagnostics disagrees with the currently-tested system.

Alternative approach by • Daescu (2008):
- Diagnose how a small change to R would  
increase/decrease a quadratic forecast error aspect 
using the adjoint sensitivity technique

- Then use the diagnostics as a guide to tune  R so that 
forecast error would be reduced.

- Powerful diagnostics, but requires the tangent
linearization/adjoint of the forecast model

Objective of this study:•
- to formulate an ensemble-based equivalent of
Daescu’s adjoint-based R-sensitivity diagnostics

- to assess effectiveness of its application to R-tuning

2. Formulation
Define the forecast error as                        and its •
quadratic aspect 

reviewed in detail by Buehner (2010), most previously
proposed methods use the statistics of observation-
minus-background departures (O 2 B), which contain
contributions from both B and R, and separate R from
B under some additional assumptions. For example,
Hollingsworth and Lönnberg’s (1986) method, the first
of this type, assumes the diagonality of R; the so-called
Desroziers method, one of the most popular methods of
this kind (Desroziers et al. 2005), assumes optimality of
the DA system (i.e., perfectly prescribed B and R and
the perfectly computed Kalman gain K) and uses
observation-minus-analysis residuals (O 2 A) in ad-
dition to O 2 B to check the optimality of the cur-
rently prescribed covariances. These approaches have
been applied to many systems and data and have
proven to be useful, but each has its limitations be-
cause no single assumption is applicable to every sit-
uation (Buehner 2010).
Another relatively new approach, which has not been

covered by Buehner (2010), originates from the ad-
joint sensitivity studies. The ground-breaking work by
Langland and Baker (2004) introduced forecast sensi-
tivity to observations (FSO), a technique that allows us
to estimate how much each of the assimilated observa-
tions reduced or increased the forecast errors measured
with some quadratic norm, without having to perform
the expensive observing system experiments (OSEs).
Daescu (2008) generalized the FSO technique and
gave a formulation for forecast sensitivity to the back-
ground error covariance (B sensitivity) and the obser-
vation error covariance (R sensitivity). In parallel to
FSO, Daescu’s (2008) method allows us to estimate how
much the forecast would be improved or degraded by
adding small perturbations to each component ofB orR
without actually repeating DA experiments with dif-
ferent sets of B and R. Daescu’s R-sensitivity method
has been successfully applied to the global NWP systems
of several operational centers including the National
Aeronautics and Space Administration (NASA; Daescu
and Todling 2010), the Japan Meteorological Agency
(JMA; Ishibashi 2010), the Naval Research Laboratory
(NRL; Daescu and Langland 2013), and the European
Centre forMedium-RangeWeather Forecasts (ECMWF;
Cardinali and Healy 2014).
While being a powerful diagnostic tool, the applica-

bility of the adjoint sensitivity methods such as FSO and
Daescu’s methods had been somewhat limited because
these approaches require the adjoint of the forecast
model, which is difficult to develop and/or maintain. For
FSO, this limitation has been recently resolved by
adapting it to EnKF (Liu andKalnay 2008; Li et al. 2010;
Kalnay et al. 2012). The most recent formulation of the
ensemble-based FSO, or EFSO, proposed by Kalnay

et al. (2012), has been successfully implemented into a
quasi-operational global EnKF system of the National
Centers for Environmental Prediction (NCEP;Ota et al.
2013), a German convective-scale regional EnKF DA
system (Sommer and Weissmann 2014), and JMA’s
global DA system.
The objective of this paper is to show that it is possi-

ble, by combining the derivations of EFSO in Kalnay
et al. (2012) and the R sensitivity in Daescu (2008), to
formulate an ensemble version of forecast sensitivity to
observation error covariance R. We refer to these sen-
sitivity diagnostics as the ensemble forecast sensitivity to
R (EFSR). This paper is structured as follows. Section 2
derives the formulation of EFSR. Section 3 presents the
setup and the results of idealized experiments with a
simple toy system that are designed to verify the validity
of EFSR formulation. Section 4 briefly describes the
setup of realistic experiments using a lower-resolution
version of the NCEP’s global hybridDA system. Section
5 presents the results of EFSR diagnostics on this system
and an R-sensitivity experiment guided by the EFSR
results. Section 6 concludes the paper with an outlook on
future directions.

2. EFSR formulation

In this section we introduce our EFSR formulation,
building upon the derivations of Daescu (2008) and
Kalnay et al. (2012).

a. Forecast sensitivity to each element of R

1) GENERAL FORMULATION

Consider a DA problem at time t5 0. Our goal is to
derive an expression for how the scalar error ef

tj0 of the
t-hour forecast would change by small variations in the
observation error covariance matrix from R to R1R0.
We measure the forecast error with a quadratic norm:

e f
tj0 5 eTtj0Cetj0 , (1)

with

e
tj0 5 xf

tj0 2xyt , (2)

where xf
tj0 is the forecast valid at time t initialized at time

t5 0, xyt is the verifying state at time t, and C is a square
positive-definitematrix that defines the error norm, which
is discussed later. With FSR our interest is in quantifying
the infinitesimal change to the scalar error aspect e f

tj0
of the forecast xf

tj0 initialized with the analysis xa0 that
would result from an infinitesimally small perturbation
to R, unlike FSO, which estimates the finite-amplitude
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• R-sensitivity derivation 
by Daescu (2008)  
requires the adjoint of 
the forecast model (Mt|0) 
and the data assimilation 
(K). 

difference in the forecast error eftj0 2 eftj26 caused by the
assimilation of observations at time 0. Accordingly, FSR
formulation only involves analysis trajectory xftj0, in
contrast to FSO formulation, which involves both anal-
ysis and background trajectories: xftj0 and xftj26.
Daescu (2008) showed that the sensitivity of e f

tj0 with
respect to the (i, j) element of R can be expressed as

›e f
tj0

›R
i,j

52(R21dyoa)
j

 
›ef

tj0

›yo

!

i

, (3)

with

›ef
tj0

›yo
5 2KTMT

tj0Cetj0 , (4)

where dyoa 5 yo 2H(xa0) is theO2A residual, withH(!)
denoting the observation operator, xa0 the analysis model
state, and yo the observations, all valid at time 0;
K5BHT(HBHT 1R)21 is the gain matrix with H being
the Jacobian of H linearized around the background
model state xb0 5 xf0j26 valid at time 0; and MT

tj0 is the
adjoint of the tangent linear forecast model from time
0 to t linearized around the analysis trajectory.

2) ADJOINT-BASED EVALUATION OF EQ. (4)
WITHIN A 4D-VAR

In an operational system, the adjoint evaluation of KT

in Eq. (4) is not straightforward since K is extremely
large (typically on the order of ;109 3 106 elements as
of 2017), so that it can never be explicitly stored on
memory. Also, given the complexity of the DA code,
writing its adjoint line by line, as was done by Zhu and
Gelaro (2008), is a demanding task. Within the context
of FSO calculations, a practical algorithm has been
proposed that multiplies a vector by KT using the ex-
isting DA code without explicitly writing its adjoint
(e.g., Trémolet 2008; Cardinali 2009 ), and we follow this
approach in our AFSR calculations. The essence of this
algorithm is to exploit the capacity of 4D-Var to im-
plicitly evaluate the multiplication of a vector by the
analysis error covariance matrix A: in an optimal anal-
ysis, the Kalman gain matrix can be expressed as
K5AHTR21, so that the analysis equation becomes

xa0 2 xb0edxab5Kdyob5A(HTR21dyob) , (5)

where dyob5 yo 2H(xb0) is the O 2 B innovation and
A5 (B21 1HTR21H)21 is the analysis error covariance
matrix that is necessarily symmetric. Thus, the 4D-Var
algorithm, which solves the analysis equation, Eq. (5),
can be viewed as an algorithm that, given the input
vector v[HTR21dyob, multiplies it with the matrix A

and outputs Av. Then, by applying the same expression
K5AHTR21 to Eq. (4), and noting that A and R21 are
symmetric, we have

›ef
tj0

›yo
5 2KTMT

tj0Cetj0 5 2(AHTR21)TMT
tj0Cetj0

5 (R21H)A(MT
tj02Cetj0) . (6)

In light of Eq. (6), and recalling that the Jo term in the
cost function minimized in the incremental 4D-Var al-
gorithm can be reorganized as

J
o
(dx)5

1

2
(dyob2Hdx)TR21(dyob2Hdx)

5
1

2
(Hdx)TR21(Hdx)2dxT(HTR21dyob)

1
1

2
(dyobTR21dyob)

5
1

2
(Hdx)TR21(Hdx)2dxTv1const., (7)

and that its gradient is=Jo 5HTR21Hdx2 v, the forecast
error sensitivity to observations shown in Eq. (4) can be
evaluated with the following procedure: first, compute
the vector udMT

tj02Cetj0 by integrating the adjoint
model backward from time t to 0 from the ‘‘initial’’
conditions dx5 2Cetj0; then, ingest the vector u into the
4D-Var algorithm Eq. (7) in place of v(5HTR21dyob)
in evaluating the Jo term and its gradient =Jo 5
HTR21Hdx2 v. The resultant output isAu5AMT

tj02Cetj0.
Finally, we compute the sensitivity vector ›eftj0/›y

o by
applying H and multiplying it with R21. Note that in
general the analysis is not optimal, so that A is only an
approximation of the analysis error covariance.

3) ENSEMBLE-BASED IMPLEMENTATION (EFSR)

Now, we proceed to derive an ensemble equivalent of
Eqs. (3) and (4). The essential part of the derivation of
EFSO by Kalnay et al. (2012) is to exploit the fact that,
in EnKF, the Kalman gain K is approximated by
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(XaXaT)HTR21 5
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XaYaTR21 ,

(8)

where K is the ensemble size, Xa 5 [xa(1)0 2 xa0, . . . ,
xa(K)
0 2 xa0] is the matrix of the analysis perturbations with

xa(i)0 denoting the ith member analysis and xa0 5
1/K!K

i51x
a(i)
0 their ensemble mean, and Ya 5HXa is the

analysis perturbations mapped onto the observation
space. In practice, when the observation operator H
is nonlinear, Ya can be conveniently approximated
by HXa ’ [H(xa(1)0 )2H(xa0), . . . , H(xa(K)

0 )2H(xa0)] with
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model state xb0 5 xf0j26 valid at time 0; and MT

tj0 is the
adjoint of the tangent linear forecast model from time
0 to t linearized around the analysis trajectory.

2) ADJOINT-BASED EVALUATION OF EQ. (4)
WITHIN A 4D-VAR

In an operational system, the adjoint evaluation of KT

in Eq. (4) is not straightforward since K is extremely
large (typically on the order of ;109 3 106 elements as
of 2017), so that it can never be explicitly stored on
memory. Also, given the complexity of the DA code,
writing its adjoint line by line, as was done by Zhu and
Gelaro (2008), is a demanding task. Within the context
of FSO calculations, a practical algorithm has been
proposed that multiplies a vector by KT using the ex-
isting DA code without explicitly writing its adjoint
(e.g., Trémolet 2008; Cardinali 2009 ), and we follow this
approach in our AFSR calculations. The essence of this
algorithm is to exploit the capacity of 4D-Var to im-
plicitly evaluate the multiplication of a vector by the
analysis error covariance matrix A: in an optimal anal-
ysis, the Kalman gain matrix can be expressed as
K5AHTR21, so that the analysis equation becomes

xa0 2 xb0edxab5Kdyob5A(HTR21dyob) , (5)

where dyob5 yo 2H(xb0) is the O 2 B innovation and
A5 (B21 1HTR21H)21 is the analysis error covariance
matrix that is necessarily symmetric. Thus, the 4D-Var
algorithm, which solves the analysis equation, Eq. (5),
can be viewed as an algorithm that, given the input
vector v[HTR21dyob, multiplies it with the matrix A

and outputs Av. Then, by applying the same expression
K5AHTR21 to Eq. (4), and noting that A and R21 are
symmetric, we have
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and that its gradient is=Jo 5HTR21Hdx2 v, the forecast
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evaluated with the following procedure: first, compute
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tj02Cetj0 by integrating the adjoint
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conditions dx5 2Cetj0; then, ingest the vector u into the
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in evaluating the Jo term and its gradient =Jo 5
HTR21Hdx2 v. The resultant output isAu5AMT

tj02Cetj0.
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applying H and multiplying it with R21. Note that in
general the analysis is not optimal, so that A is only an
approximation of the analysis error covariance.
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Now, we proceed to derive an ensemble equivalent of
Eqs. (3) and (4). The essential part of the derivation of
EFSO by Kalnay et al. (2012) is to exploit the fact that,
in EnKF, the Kalman gain K is approximated by
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analysis perturbations mapped onto the observation
space. In practice, when the observation operator H
is nonlinear, Ya can be conveniently approximated
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Within an • EnKF, adjoint
evaluation can be 
alleviated following the 
derivation of EFSO by 
Kalnay et al. (2012).

H(xa0)5 1/K!K
i51H(xa(i)0 ), in which case the last equality

in Eq. (8) becomes an approximation. Substituting Eq. (8)
into Eqs. (3) and (4) yields
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where Xf
tj0 5 [xf (1)tj0 2 xftj0, . . . , x

f (K)
tj0 2 xftj0] is the matrix of

forecast perturbations initialized at time 0 and valid at
time t with xf (i)tj0 denoting the ith member t-hour forecast
from time 0 and xftj0 5 1/K!K

i51x
f (i)
tj0 their ensemble mean,

and the finite-difference approximation to the tangent
linear time evolution of the perturbation, Xf

tj0 ’Mtj0X
a,

has been used in deriving the third from the second
expression. Equation (9) is the formulation of our
EFSR. Note that, unlike the adjoint-based formulation
shown in Eq. (3), Eq. (9) is straightforward to evaluate:
as with the EFSO of Kalnay et al. (2012), all the vari-
ables necessary to evaluate EFSR are readily available
from the standard product of any ensemble DA system,
except that the range of the ensemble forecast has to be
extended to t hours to obtain Xf

tj0.
In practical situations where the ensemble size is

smaller than the system’s number of degrees of freedom,
covariance localization is necessary to suppress sam-
pling errors, as with any ensemble-based methods. We
localize the (cross-)covariance 1/(K2 1)YaXfT

tj0 so that
Eq. (9) becomes
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fR21[r+(YaXfT

tj0)]Cetj0gi , (10)

where the symbol + represents elementwise multiplica-
tion (Schur product) and r is a localization matrix. As
discussed by Kalnay et al. (2012) and Ota et al. (2013), it
is desirable to take into account in the representation of
the localization factor r the effect of evolving error
correlation structure. In the idealized experiments pre-
sented in section 3, we avoid localization by employing a
large ensemble size. In the experiments with theNCEP’s
real system, we employ the simple localization advection
scheme of Ota et al. (2013). For a long lead time, more
sophisticated methods that account for time-evolving
error correlation, such as the ensemble correlations
raised to a power (ECO-RAP) scheme of Bishop and
Hodyss (2009a,b) and a group-filter technique of
Gasperoni and Wang (2015), would yield a better
estimation.

The computational cost required to evaluate Eq. (9)
or (10) is not very expensive. Denoting the dimension of
the system’s state vector and the number of observations
byNstate andNobs, respectively, an explicit evaluation of
Eq. (9) requires only ;Nstate 3 K operations (for mul-
tiplying the vector Cetj0 by the matrix Xf

tj0) and;Nobs 3
K operations [for multiplying the resultant (K 2 1) 3 1
vector by the matrix R21Ya]. Assuming that R21 is di-
agonal, Eq. (10) can be evaluated for each observa-
tion (indexed by i), by first computing the contribution
from the lth component of the state vector as
ril(Cetj0)l!K

k 51(Y
a)ik (X

f
tj0)lk and then taking summation

over l from 1 to Nstate, which requires ;Nstate 3 K
operations. This computation is repeated for i 5 1, . . . ,
Nobs, amounting to a total of ;Nobs 3 Nstate 3 K oper-
ations. This is more expensive than the case of Eq. (9)
without localization by a factor of Nobs, but is still less ex-
pensive compared to the EnKF assimilation. In practice,
the most expensive part of computing EFSR is generating
extended-range (t hour) ensemble forecasts to obtain Xf

tj0.
For convenience, we call the forecast sensitivity to

observation error covariance matrix FSR (short for
forecast sensitivity toR), and refer to its original adjoint
formulation by Daescu (2008) as AFSR and our en-
semble formulation as EFSR.
We emphasize that, unlike other diagnostic methods

for optimality of R (e.g., Talagrand 1999; Desroziers
et al. 2005), FSR diagnostics, neither the original adjoint
version (Daescu 2008) nor our proposed ensemble ver-
sion assume that B and R are correctly specified or that
the observations/background are unbiased.

b. Sensitivity to scaling factors

In tuning the observation error covariancematrixR, it is
customary to classify observations into some subgroups
among which observation error correlations can be ne-
glected and then to scale the error covariances within each
group by a single common factor. Daescu and Langland
(2013) derived a formulation for forecast sensitivity to
these scaling factors. Let the observations yo bepartitioned
into I subgroups fyoi , i5 1, . . . , Ig and consider scaling
each of them by the scaling factors fsoi , i5 1, . . . , Ig:

R
i
/ soi Ri

, (11)

where Ri is the subblock of R corresponding to the
subgroup yoi of the observations. The scaling factors soi
are positive nondimensional scalars. Then, the forecast
sensitivity to these scaling factors is given by
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difference in the forecast error eftj0 2 eftj26 caused by the
assimilation of observations at time 0. Accordingly, FSR
formulation only involves analysis trajectory xftj0, in
contrast to FSO formulation, which involves both anal-
ysis and background trajectories: xftj0 and xftj26.
Daescu (2008) showed that the sensitivity of e f
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where dyoa 5 yo 2H(xa0) is theO2A residual, withH(!)
denoting the observation operator, xa0 the analysis model
state, and yo the observations, all valid at time 0;
K5BHT(HBHT 1R)21 is the gain matrix with H being
the Jacobian of H linearized around the background
model state xb0 5 xf0j26 valid at time 0; and MT

tj0 is the
adjoint of the tangent linear forecast model from time
0 to t linearized around the analysis trajectory.

2) ADJOINT-BASED EVALUATION OF EQ. (4)
WITHIN A 4D-VAR

In an operational system, the adjoint evaluation of KT

in Eq. (4) is not straightforward since K is extremely
large (typically on the order of ;109 3 106 elements as
of 2017), so that it can never be explicitly stored on
memory. Also, given the complexity of the DA code,
writing its adjoint line by line, as was done by Zhu and
Gelaro (2008), is a demanding task. Within the context
of FSO calculations, a practical algorithm has been
proposed that multiplies a vector by KT using the ex-
isting DA code without explicitly writing its adjoint
(e.g., Trémolet 2008; Cardinali 2009 ), and we follow this
approach in our AFSR calculations. The essence of this
algorithm is to exploit the capacity of 4D-Var to im-
plicitly evaluate the multiplication of a vector by the
analysis error covariance matrix A: in an optimal anal-
ysis, the Kalman gain matrix can be expressed as
K5AHTR21, so that the analysis equation becomes

xa0 2 xb0edxab5Kdyob5A(HTR21dyob) , (5)

where dyob5 yo 2H(xb0) is the O 2 B innovation and
A5 (B21 1HTR21H)21 is the analysis error covariance
matrix that is necessarily symmetric. Thus, the 4D-Var
algorithm, which solves the analysis equation, Eq. (5),
can be viewed as an algorithm that, given the input
vector v[HTR21dyob, multiplies it with the matrix A

and outputs Av. Then, by applying the same expression
K5AHTR21 to Eq. (4), and noting that A and R21 are
symmetric, we have
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In light of Eq. (6), and recalling that the Jo term in the
cost function minimized in the incremental 4D-Var al-
gorithm can be reorganized as
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and that its gradient is=Jo 5HTR21Hdx2 v, the forecast
error sensitivity to observations shown in Eq. (4) can be
evaluated with the following procedure: first, compute
the vector udMT

tj02Cetj0 by integrating the adjoint
model backward from time t to 0 from the ‘‘initial’’
conditions dx5 2Cetj0; then, ingest the vector u into the
4D-Var algorithm Eq. (7) in place of v(5HTR21dyob)
in evaluating the Jo term and its gradient =Jo 5
HTR21Hdx2 v. The resultant output isAu5AMT

tj02Cetj0.
Finally, we compute the sensitivity vector ›eftj0/›y

o by
applying H and multiplying it with R21. Note that in
general the analysis is not optimal, so that A is only an
approximation of the analysis error covariance.

3) ENSEMBLE-BASED IMPLEMENTATION (EFSR)

Now, we proceed to derive an ensemble equivalent of
Eqs. (3) and (4). The essential part of the derivation of
EFSO by Kalnay et al. (2012) is to exploit the fact that,
in EnKF, the Kalman gain K is approximated by
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where K is the ensemble size, Xa 5 [xa(1)0 2 xa0, . . . ,
xa(K)
0 2 xa0] is the matrix of the analysis perturbations with

xa(i)0 denoting the ith member analysis and xa0 5
1/K!K

i51x
a(i)
0 their ensemble mean, and Ya 5HXa is the

analysis perturbations mapped onto the observation
space. In practice, when the observation operator H
is nonlinear, Ya can be conveniently approximated
by HXa ’ [H(xa(1)0 )2H(xa0), . . . , H(xa(K)

0 )2H(xa0)] with
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denoting the observation operator, xa0 the analysis model
state, and yo the observations, all valid at time 0;
K5BHT(HBHT 1R)21 is the gain matrix with H being
the Jacobian of H linearized around the background
model state xb0 5 xf0j26 valid at time 0; and MT

tj0 is the
adjoint of the tangent linear forecast model from time
0 to t linearized around the analysis trajectory.
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WITHIN A 4D-VAR

In an operational system, the adjoint evaluation of KT

in Eq. (4) is not straightforward since K is extremely
large (typically on the order of ;109 3 106 elements as
of 2017), so that it can never be explicitly stored on
memory. Also, given the complexity of the DA code,
writing its adjoint line by line, as was done by Zhu and
Gelaro (2008), is a demanding task. Within the context
of FSO calculations, a practical algorithm has been
proposed that multiplies a vector by KT using the ex-
isting DA code without explicitly writing its adjoint
(e.g., Trémolet 2008; Cardinali 2009 ), and we follow this
approach in our AFSR calculations. The essence of this
algorithm is to exploit the capacity of 4D-Var to im-
plicitly evaluate the multiplication of a vector by the
analysis error covariance matrix A: in an optimal anal-
ysis, the Kalman gain matrix can be expressed as
K5AHTR21, so that the analysis equation becomes

xa0 2 xb0edxab5Kdyob5A(HTR21dyob) , (5)

where dyob5 yo 2H(xb0) is the O 2 B innovation and
A5 (B21 1HTR21H)21 is the analysis error covariance
matrix that is necessarily symmetric. Thus, the 4D-Var
algorithm, which solves the analysis equation, Eq. (5),
can be viewed as an algorithm that, given the input
vector v[HTR21dyob, multiplies it with the matrix A

and outputs Av. Then, by applying the same expression
K5AHTR21 to Eq. (4), and noting that A and R21 are
symmetric, we have
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and that its gradient is=Jo 5HTR21Hdx2 v, the forecast
error sensitivity to observations shown in Eq. (4) can be
evaluated with the following procedure: first, compute
the vector udMT

tj02Cetj0 by integrating the adjoint
model backward from time t to 0 from the ‘‘initial’’
conditions dx5 2Cetj0; then, ingest the vector u into the
4D-Var algorithm Eq. (7) in place of v(5HTR21dyob)
in evaluating the Jo term and its gradient =Jo 5
HTR21Hdx2 v. The resultant output isAu5AMT

tj02Cetj0.
Finally, we compute the sensitivity vector ›eftj0/›y

o by
applying H and multiplying it with R21. Note that in
general the analysis is not optimal, so that A is only an
approximation of the analysis error covariance.

3) ENSEMBLE-BASED IMPLEMENTATION (EFSR)

Now, we proceed to derive an ensemble equivalent of
Eqs. (3) and (4). The essential part of the derivation of
EFSO by Kalnay et al. (2012) is to exploit the fact that,
in EnKF, the Kalman gain K is approximated by
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xa(K)
0 2 xa0] is the matrix of the analysis perturbations with

xa(i)0 denoting the ith member analysis and xa0 5
1/K!K
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analysis perturbations mapped onto the observation
space. In practice, when the observation operator H
is nonlinear, Ya can be conveniently approximated
by HXa ’ [H(xa(1)0 )2H(xa0), . . . , H(xa(K)
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3. Idealized experiments with Lorenz ’96 model

Rtrue 5 diag(so ,true2

1 , . . . ,so ,true2

40 ). (18)

Throughout the experiments, the observation error co-
variance prescribed to the DA systemR is also assumed
to be diagonal:

R5 diag(so 2

1 , . . . ,so 2

40). (19)

b. Experimental design

First, we produced the nature (or ‘‘truth’’) by running
the forecast model Eq. (17) from an initial condition
randomly generated from the uniform distribution in
[0, 1]. The nature run is integrated from time t5 0 to 730
(which corresponds to 10 yr in dimensional time), gen-
erating truth for 14 600 cycles.
The initial background ensemble at time t 5 0 is

generated by picking up 40 truth states at 40 randomly
chosen distinctive dates. Each DA experiment is run for
14 600 cycles (10 yr) and the first 1460 cycles (1 yr), re-
garded as a spinup period, are excluded from
verification.
To examine the ability of AFSR and EFSR to detect

the misspecification of observation error variances
so 2

j , j5 1, . . . , 40, we conducted two pairs of ‘‘identical
twin’’ experiments. Each pair consists of two DA cycle
runs: one with correctly specifiedR (i.e., identical to the
truth; hereafter referred to as the correct-Rrun) and the
other with incorrectly specified R (hereafter referred to
as the incorrect-R run). The true and prescribed obser-
vation error variances for each experiment are summa-
rized in Table 1. For each of the experiments, we
compute the sensitivity vector by both the adjoint [Eqs.
(3) and (6)] and ensemble methods [Eq. (9)]. As in the
DA system, no covariance localization is performed for
EFSR estimations. As the forecast lead time, we adopt
24 h (0.2 in nondimensional time). For evaluating fore-
cast errors with Eqs. (1) and (2), we use the analysis as
the verifying state xyt and the error is measured with the
Euclidian norm. We do not show the AFSR results be-
cause they were nearly identical to the EFSR results in
all cases. The root-mean square of their normalized
differences was less than 0.2% for all experiments. We
note however that it is unclear whether the high con-
sistency between the ensemble and adjoint diagnostics,

as obtained in our idealized toy system, also holds in a
more realistic system because these two approaches rely
on different approximations. In particular, in the EFSR
formulation, the validity of the finite-difference ap-
proximation Xf

tj0 ’Mtj0X
a, and the propagation of the

localization function that is only crudely accounted for,
may become questionable especially when the evalua-
tion lead time is long; similarly, in the AFSR formula-
tion, the validity of the tangent linearity assumption for
perturbation growthmay become difficult tomaintain as
the lead time gets longer and the perturbation grows to
attain a sizable finite amplitude.

c. The SPIKE experiment

The SPIKE experiment is inspired by Liu and Kalnay
(2008) and Kalnay et al. (2012), who examined the ca-
pacity of EFSO to capture the negative impacts from the
observations at the 11th grid point that have larger ob-
servation errors than the others. In this experiment, all
observations but the one at the 11th grid point have the
error variance 0.22, while at the 11th grid point, it is 0.82.
In the incorrect-R run, they are all prescribed as 0.22.
With this experiment, we intend to see whether the
AFSR or EFSR can detect the misspecification of the
error variance at the 11th grid point to provide useful
guidance on how to correct it. We also examine whether
the FSR diagnostics do not signal ‘‘false alarms’’ when
the specification of R is correct.
We first examine the analysis errors with respect to

the truth to ensure that the system did not suffer from
any malfunction (a ‘‘filter divergence’’ in particular).
Figure 1a shows the root-mean-square errors (RMSEs)
of analysis verified against the truth averaged over the
9 yr for the correct-R and incorrect-R runs along with
the observation errors. Both runs are successful in that
the analysis is more accurate than the observations,
which ensured that a filter divergence did not occur. As
expected, the analysis becomes substantially less accu-
rate in the incorrect-R run than in the correct-R run,
especially in the vicinity of the ‘‘bad’’ observation (the
11th grid point).
We now examine the FSR diagnosed by ensemble-

and adjoint-based methods. Figure 1b shows the EFSR-
based forecast sensitivity to scaling factors of R [Eq.
(12)] for each observation. In the incorrect-R run (filled

TABLE 1. The true and prescribed observation error variances for the experiments performed using the Lorenz ’96 model.

Expt True observation error variance Prescribed observation error variance

SPIKE so ,true2

j 5

!
0:82, j5 11
0:22, j 6¼ 11

so 2

j 5 0:22 everywhere

STAGGERED so ,true2

j 5

!
0:12, j: odd
0:32, j: even

so 2

j 5 0:22 everywhere
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Throughout the experiments, the observation error co-
variance prescribed to the DA systemR is also assumed
to be diagonal:

R5 diag(so 2

1 , . . . ,so 2

40). (19)

b. Experimental design

First, we produced the nature (or ‘‘truth’’) by running
the forecast model Eq. (17) from an initial condition
randomly generated from the uniform distribution in
[0, 1]. The nature run is integrated from time t5 0 to 730
(which corresponds to 10 yr in dimensional time), gen-
erating truth for 14 600 cycles.
The initial background ensemble at time t 5 0 is

generated by picking up 40 truth states at 40 randomly
chosen distinctive dates. Each DA experiment is run for
14 600 cycles (10 yr) and the first 1460 cycles (1 yr), re-
garded as a spinup period, are excluded from
verification.
To examine the ability of AFSR and EFSR to detect

the misspecification of observation error variances
so 2

j , j5 1, . . . , 40, we conducted two pairs of ‘‘identical
twin’’ experiments. Each pair consists of two DA cycle
runs: one with correctly specifiedR (i.e., identical to the
truth; hereafter referred to as the correct-Rrun) and the
other with incorrectly specified R (hereafter referred to
as the incorrect-R run). The true and prescribed obser-
vation error variances for each experiment are summa-
rized in Table 1. For each of the experiments, we
compute the sensitivity vector by both the adjoint [Eqs.
(3) and (6)] and ensemble methods [Eq. (9)]. As in the
DA system, no covariance localization is performed for
EFSR estimations. As the forecast lead time, we adopt
24 h (0.2 in nondimensional time). For evaluating fore-
cast errors with Eqs. (1) and (2), we use the analysis as
the verifying state xyt and the error is measured with the
Euclidian norm. We do not show the AFSR results be-
cause they were nearly identical to the EFSR results in
all cases. The root-mean square of their normalized
differences was less than 0.2% for all experiments. We
note however that it is unclear whether the high con-
sistency between the ensemble and adjoint diagnostics,

as obtained in our idealized toy system, also holds in a
more realistic system because these two approaches rely
on different approximations. In particular, in the EFSR
formulation, the validity of the finite-difference ap-
proximation Xf

tj0 ’Mtj0X
a, and the propagation of the

localization function that is only crudely accounted for,
may become questionable especially when the evalua-
tion lead time is long; similarly, in the AFSR formula-
tion, the validity of the tangent linearity assumption for
perturbation growthmay become difficult tomaintain as
the lead time gets longer and the perturbation grows to
attain a sizable finite amplitude.

c. The SPIKE experiment

The SPIKE experiment is inspired by Liu and Kalnay
(2008) and Kalnay et al. (2012), who examined the ca-
pacity of EFSO to capture the negative impacts from the
observations at the 11th grid point that have larger ob-
servation errors than the others. In this experiment, all
observations but the one at the 11th grid point have the
error variance 0.22, while at the 11th grid point, it is 0.82.
In the incorrect-R run, they are all prescribed as 0.22.
With this experiment, we intend to see whether the
AFSR or EFSR can detect the misspecification of the
error variance at the 11th grid point to provide useful
guidance on how to correct it. We also examine whether
the FSR diagnostics do not signal ‘‘false alarms’’ when
the specification of R is correct.
We first examine the analysis errors with respect to

the truth to ensure that the system did not suffer from
any malfunction (a ‘‘filter divergence’’ in particular).
Figure 1a shows the root-mean-square errors (RMSEs)
of analysis verified against the truth averaged over the
9 yr for the correct-R and incorrect-R runs along with
the observation errors. Both runs are successful in that
the analysis is more accurate than the observations,
which ensured that a filter divergence did not occur. As
expected, the analysis becomes substantially less accu-
rate in the incorrect-R run than in the correct-R run,
especially in the vicinity of the ‘‘bad’’ observation (the
11th grid point).
We now examine the FSR diagnosed by ensemble-

and adjoint-based methods. Figure 1b shows the EFSR-
based forecast sensitivity to scaling factors of R [Eq.
(12)] for each observation. In the incorrect-R run (filled

TABLE 1. The true and prescribed observation error variances for the experiments performed using the Lorenz ’96 model.

Expt True observation error variance Prescribed observation error variance

SPIKE so ,true2

j 5

!
0:82, j5 11
0:22, j 6¼ 11

so 2

j 5 0:22 everywhere

STAGGERED so ,true2

j 5

!
0:12, j: odd
0:32, j: even

so 2

j 5 0:22 everywhere
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Throughout the experiments, the observation error co-
variance prescribed to the DA systemR is also assumed
to be diagonal:

R5 diag(so 2
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may become questionable especially when the evalua-
tion lead time is long; similarly, in the AFSR formula-
tion, the validity of the tangent linearity assumption for
perturbation growthmay become difficult tomaintain as
the lead time gets longer and the perturbation grows to
attain a sizable finite amplitude.

c. The SPIKE experiment

The SPIKE experiment is inspired by Liu and Kalnay
(2008) and Kalnay et al. (2012), who examined the ca-
pacity of EFSO to capture the negative impacts from the
observations at the 11th grid point that have larger ob-
servation errors than the others. In this experiment, all
observations but the one at the 11th grid point have the
error variance 0.22, while at the 11th grid point, it is 0.82.
In the incorrect-R run, they are all prescribed as 0.22.
With this experiment, we intend to see whether the
AFSR or EFSR can detect the misspecification of the
error variance at the 11th grid point to provide useful
guidance on how to correct it. We also examine whether
the FSR diagnostics do not signal ‘‘false alarms’’ when
the specification of R is correct.
We first examine the analysis errors with respect to

the truth to ensure that the system did not suffer from
any malfunction (a ‘‘filter divergence’’ in particular).
Figure 1a shows the root-mean-square errors (RMSEs)
of analysis verified against the truth averaged over the
9 yr for the correct-R and incorrect-R runs along with
the observation errors. Both runs are successful in that
the analysis is more accurate than the observations,
which ensured that a filter divergence did not occur. As
expected, the analysis becomes substantially less accu-
rate in the incorrect-R run than in the correct-R run,
especially in the vicinity of the ‘‘bad’’ observation (the
11th grid point).
We now examine the FSR diagnosed by ensemble-

and adjoint-based methods. Figure 1b shows the EFSR-
based forecast sensitivity to scaling factors of R [Eq.
(12)] for each observation. In the incorrect-R run (filled

TABLE 1. The true and prescribed observation error variances for the experiments performed using the Lorenz ’96 model.

Expt True observation error variance Prescribed observation error variance
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circles), EFSR successfully diagnoses large negative
sensitivity at the 11th grid point where the observation
error variance was intentionally made large (note that a
negative sensitivity means that the forecast error would
decrease by inflating the prescribed observation error
variance, i.e., the current prescribed observation error
variance is too small). On the other hand, for the cor-
rect-R run (open squares), the EFSR shows almost flat
zero sensitivity, which means that there are no false
alarms’’.
It is interesting to note that, in the incorrect-R run

(filled circles), despite the fact that the observation error
variances for the observations near the ‘‘bad’’ observa-
tion are correctly specified, the EFSR diagnoses positive
sensitivity, which tells us that we should decrease the

observation error variances for them.Our interpretation
for this is as follows:

The sensitivity gradient ›eftj0/›s
o
i , being a partial de-

rivative, tells us how, for each index i, a small displace-
ment in soi from unity would change the forecast error eftj0
if the prescribed error variances for other observations
are kept unchanged. Thus, if there is an observation that
makes the forecast worse, then we can make the forecast
better by giving higher credence to the adjacent, more
accurate observations.

This raises one concern: the FSRmethodsmay not give a
reliable diagnostic if accurate and inaccurate observa-
tions are located close to each other. This concern is
addressed in the next experiment.

FIG. 1. (a) Analysis errors verified against the truth for the SPIKE experiment displayed as
a function of grid number. The filled circles and open squares show the analysis errors, re-
spectively, for the incorrect-R and correct-R runs. As a reference, observation errors verified
against the truth are also shown by the triangles. (b) Ensemble-based 24-h forecast sensitivity
to theR-scaling factors for the incorrect-R (filled circles) and correct-R (open squares) runs of
the SPIKE experiment.
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d. The STAGGERED experiment

The STAGGERED experiment is designed to assess
whether the FSR diagnostics are robust to cases where
observations with different magnitudes of error are lo-
cated close to each other. The true observation error
variances are 0.12 and 0.32, respectively, for odd- and
even-numbered grid points. In the incorrect-R run, they
are all prescribed as 0.22; we should thus reduce–increase
the error variances at odd–even grid points. The design of
the STAGGERED experiment is very similar to the one
performed by Daescu and Todling (2010), who sought to
validate their AFSR diagnostics. The precise setup is not
identical, but the incorrect-R run in our STAGGERED
experiment and that in one of their experiments, which
they named DAS-1, are similar in that the same Lorenz
’96 model is used, that the accurate and less accurate
observations are placed next to each other, and that the
DA system prescribes a constant observation error vari-
ance to both the accurate and less accurate observations.

Figure 2a shows the analysis RMSE verified against
the truth for the STAGGERED experiment. Both
incorrect-R (filled circles) and correct-R (open squares)
runs are successful in the sense that the analysis is more
accurate than the observations. In the incorrect-R run,
the analyses are substantially more accurate on the odd
grids where observations are more accurate; on the other
hand, in the correct-R run, the difference in the quality of
analysis between the odd and even grids is much smaller.
The fact that correctly specifying the observation error
variances markedly improves the analysis leads us to
expect that FSR diagnostics should give us correct guid-
ance on how to tune the R.
The EFSR-based forecast sensitivity to scaling factors

of R is shown in Fig. 2b. Despite our concern that FSR
diagnostics might not work well if accurate and in-
accurate observations are located close to each other
(see the previous subsection), EFSR turned out to be
successful: in the incorrect-R run, it shows clear positive
and negative sensitivity on the odd and even grids, which

FIG. 2. As in Fig. 1, but for the STAGGERED experiment.
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Results

EFSR successfully diagnoses whether so2 should be 
increased or decreased.

4. Experiments with an quasi-operational system
EFSR diagnostics for the 
NCEP’s GFS hybrid GSI
coupled with LETKF

Positiv• e R-sensitivity for 
most observation types 
except for MODIS wind.
Pos• /neg sensitivity 
implies that R should be 
reduced/increased.

Forecast sensitivity to observation error 
variance scaling factor
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Forecast sensitivity to observation error 
variance scaling factor

a)

c)

b)

d)

σo2 × 0.9 

σo2 × 1.1 

σo2 × 0.9 

σo2 × 0.9 

σo2 × 1.1 

σo2 × 0.9 

0.143 0.120R-sensitivity experiment:
R • for three obstypes (Aircraft, 
Radiosonde and AMSU-A) with large 
positive sensitivity reduced by x0.9, 
R for MODIS wind scaled by 1.1.

Results:
EFSO for the tuned • obstypes
enhanced
but no statistically significant forecast •
error reduction.

5. Summary
Ensemble• -based R-sensitivity successfully formulated
Worked• very well for idealized experiments
More work required to improve operational system•
Details published in our • MWR paper available online at 
https://doi.org/10.1175/MWR-D-17-0122.1 (open access)
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