

# **Output Base of Content and Sensitivity to Observation Error Covariance**

STIVERSITA 8 8 56 7 8 8 56 7 8 8 56

DAISUKE HOTTA\*



University of Maryland, College Park, College Park, Maryland, and Meteorological Research Institute, Tsukuba, and Japan Meteorological Agency, Tokyo, Japan

EUGENIA KALNAY

University of Maryland, College Park, College Park, Maryland

#### YOICHIRO OTA

Japan Meteorological Agency, Tokyo, Japan

TAKEMASA MIYOSHI

University of Maryland, College Park, College Park, Maryland, and RIKEN Advanced Institute for Computational Science, Kobe, Japan

#### **1. Motivation**

- Every standard DA textbook starts by assuming that x<sup>b</sup> ~ 𝒩(x<sup>true</sup>, B), y<sup>o</sup> ~ 𝒩(y<sup>true</sup>, R)

   as if B and R are known.
- However, **B** and **R** are unknown external parameters that, in practice, have to be somehow estimated, often subject to *empirical/subjective tuning*. In this study we focus on how to estimate **R**.

## **3. Idealized experiments with Lorenz '96 model**

### Experimental Set-up

| Expt      | True observation error variance                                                                              | Prescribed obs. err. var.           |
|-----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------|
| SPIKE     | $\sigma_{j}^{o,\text{true}^{2}} = \begin{cases} 0.8^{2}, & j = 11\\ 0.2^{2}, & j \neq 11 \end{cases}$        | $\sigma_j^{o^2} = 0.2^2$ everywhere |
| STAGGERED | $\sigma_j^{o,\text{true}^2} = \begin{cases} 0.1^2, & j: \text{ odd} \\ 0.3^2, & j: \text{ even} \end{cases}$ | $\sigma_j^{o^2} = 0.2^2$ everywhere |
| Results   |                                                                                                              |                                     |



- Standard methods to estimate **R** rely on residual statistics combined with some ad-hoc assumptions:
  - Hollingsworth and Lönnberg (1986): assume diagonality of **R**.
  - Desroziers et al. (2005): assume optimality of the currently-tested DA system; iteratively correct if diagnostics disagrees with the currently-tested system.
- Alternative approach by Daescu (2008):
  - Diagnose how a small change to **R** would increase/decrease a quadratic forecast error aspect using the adjoint sensitivity technique
  - Then use the diagnostics as a guide to tune **R** so that forecast error would be reduced.
  - Powerful diagnostics, but requires the tangent linearization/adjoint of the forecast model



- Objective of this study:
  - to formulate an ensemble-based equivalent of Daescu's adjoint-based R-sensitivity diagnostics
  - to assess effectiveness of its application to R-tuning

### **2.** Formulation

• Define the forecast error as  $\mathbf{e}_{t|0} = \mathbf{x}_{t|0}^f - \mathbf{x}_t^v$  and its quadratic aspect  $e_{t|0}^f = \mathbf{e}_{t|0}^T \mathbf{C} \mathbf{e}_{t|0}$ 

where  $\mathbf{x}_{t|0}^{f}$  is the forecast valid at time *t* initialized at time t = 0,  $\mathbf{x}_{t}^{v}$  is the verifying state at time *t*, and **C** is a square positive-definite matrix that defines the error norm

• **R**-sensitivity derivation by Daescu (2008) requires the adjoint of the forecast model ( $M_{t|0}$ ) and the data assimilation



#### 4. Experiments with an quasi-operational system

#### EFSR diagnostics for the NCEP's GFS hybrid GSI coupled with LETKF

- Positive **R**-sensitivity for most observation types except for MODIS wind.
- Pos/neg sensitivity implies that **R** should be reduced/increased.

### <u>R-sensitivity experiment:</u>

- R for three obstypes (Aircraft, Radiosonde and AMSU-A) with large positive sensitivity reduced by x0.9, R for MODIS wind scaled by 1.1.
   Results:
- EFSO for the tuned obstypes





(K). • Within an EnKF, adjoint evaluation can be alleviated following the derivation of EFSO by Kalnay et al. (2012). •  $\mathbf{K} = \mathbf{A}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1} \approx \frac{1}{K-1} \mathbf{X}^{a} \mathbf{Y}^{a^{\mathsf{T}}}\mathbf{R}^{-1} = \frac{1}{K-1} \mathbf{X}^{a} \mathbf{Y}^{a^{\mathsf{T}}}\mathbf{R}^{-1}$ •  $\mathbf{M}_{i|0} \mathbf{X}^{a} \mathbf{Y}^{\mathsf{T}} \mathbf{C} \mathbf{e}_{i|0}]_{i}$ •  $\mathbf{M}_{i|0} \mathbf{X}^{a} \mathbf{Y}^{\mathsf{T}} \mathbf{C} \mathbf{e}_{i|0}]_{i}$ 

enhanced
but no statistically significant forecast error reduction.
5. Summary
Ensemble-based R-sensitivity successfully formulated
Worked very well for idealized experiments
More work required to improve operational system
Details published in our *MWR* paper available online at https://doi.org/10.1175/MWR-D-17-0122.1 (open access)

