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The Idea

This work presents a method to combine precipitation data from different

sources through ensemble data assimilation. The aim is to obtain

• an areal precipitation product,

• spatially and temporally variable uncertainty information.

By using nowcasting, the uncertainty information evolves consistently in time

and space and is flow dependent.

Data and Ensemble Forecast

Areal precipitation measurements:

• four X-band radars in a network

• data with 30 s temporal, 60m and 1◦

spatial resolution (Fig. 1)

• network composite product on a

250x250m Cartesian grid (Fig. 1)

Probabilistic precipitation nowcasting:

• forecast of composite data by advection

• motion vectors computed through

correlation analysis (Fig. 2)

• ensemble generation by perturbation of

the motion vector field with spatially

correlated random noise (Fig. 3)

Fig. 2: Nowcasting motion vectors for a
region of the network domain.

Fig. 1: Single radar (top) and comp-
osite network (bottom) precipitation
data for 03.07.2013 15:32 UTC.

Fig. 3: Example of members from the
ensemble precipitation nowcasting.

Experiment

Data assimilation

• combines forecast and observation

• statistically weights the respective

uncertainties (Fig. 4).

Data for assimilation and verification:

• single radar data observations

• 40x40 km grid with 5 km thinning

length, shifted grids for

independent verification data (Fig. 5)

The experiment is run with

• 50 ensemble members

• 30min precipitation forecast

starting at 15:26:00 UTC (03.07.2013)

• 2min time step

• assimilation of obs. every 4min

Fig. 6 demonstrates the forecast-

assimilation cycle at one location. The

ensemble mean at the end of the

forecasting time shows as smooth,

smeared cell, probabilistic information

confines the most probable location of

the precipitation cell (Fig. 7).

Fig. 5: Assimilation and verification
locations.

INITIALISATION

- Local Ensemble Transform Kalman Filter (LETKF)

- Ensemble forecast model and members

- Observations for assimilation

ENSEMBLE FORECAST

Forecast state xb
i until next observation y

PERFORM ANALYSISWITH LETKF

Compute analysis ensemble mean:

x̂a = x̂b + PbHT [HPbHT + R ]−1[y − Hx̂b]

Pb: model error covariance

R : observation error covariance

The analysis ensemble xa
i is generated around x̂a

using a linear combination of the perturbations

of xb
i .

ENSEMBLE FORECAST

Forecast until end of forecast time

Fig. 4:Main steps of data assimilation cycle.

Fig. 6: Data assimilation cycle at an
observation location.

Fig. 7: Ensemble mean and 80%
precipitation probability contour
after 18min forecast.

Results

The ensemble spread (standard deviation σv) describes the forecast uncertainty.

Through the forecast-assimilation cycle, σv is variable and flow-dependent (Fig. 8).

It evolves according to all available information (observations and situation).

Evaluation: Concept of statistical spread-skill relation (Fig. 9)

spatially and

temporally variable

uncertainty field σv

against

constant benchmark,

mean spread of the

system σc = 1.63 dB

Scores: Ability to improve the prediction of the system's error ε

• Reliability: percentage of hits

REL = 100
N
∑{

1, if ε ≤ σ

0, otherwise

• Spread-skill deviation: deviation from the perfect spread-skill relation (RMSE)

DEV =
√

1
N
∑

(ε− σ)2 Fig. 8: Ensemble spread σv after 8min
(top) and 25min (bottom) forecast.

Results (Tab. 1) show that the variable spread σv
yields a better uncertainty forecast than the con-

stant spreadσc. It shows a smaller deviation from

the theoretical spread-skill relation and model

errors fall more frequently into the predicted un-

certainty range.

Tab. 1: Results for uncertainty
prediction assessment.

Score σc σv
REL (%) 56.38 77.13

DEV (dB) 3.17 1.25 ensemble spread σ
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Fig. 9: Theoretical spread-skill relation.

Summary and Outlook

This study presents a framework

• combining precipitation data and

• providing a flow dependent,

spatially and temporally variable

and consistent uncertainty

description.

The uncertainty field obtained by this

method yields better error estima-

tion than constant uncertainty infor-

mation.

The method has great potential for

• flow-dependent, statistical

combination of different observa-

tions under consideration of

respective information uncertainty

• generation of precipitation

ensembles

• seamless probabilistic analysis

combining observations and model

forecasts

For details on the implementation,

have a look at the poster:

pyenda - The Python Ensemble Data

Assimilaton framework (10.2)
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