Adopting NCEP’s Hybrid 4D-EnVar DA to FV3GFS

Rahul Mahajan¹, Catherine Thomas¹, Daryl Kleist², Jeff Whitaker³, and Russ Treadon²

¹IMSG @ ²NCEP/EMC, ³ESRL/PSD

NGGPS FV3
- FV3 selected as the dynamical core component of NGGPS
 - hydrostatic and non-hydrostatic options
 - Initial prototyping (mostly) with GFS physics
 - lots of technical work to adopt new dynamical core for use with current data assimilation system

Hydrostatic vs Non-hydrostatic
- Tested hydrostatic version of the FV3 model with the same data assimilation and compared against non-hydrostatic version and GSM
- From high-resolution cold start forecasts
 - RMSE and ACC are slightly better
- From low-resolution cycled DA perspective
 - Comparable RMSE and ACC
 - Stratosphere / upper Troposphere slightly better in hydrostatic version
- Both FV3 versions worse than GSM in the Stratosphere / upper Troposphere.

Low resolution Cycled DA
- Putting together all the above mentioned components, and comparing with operational version of the model:
 - Use of JEDI components e.g. UFO (FY20), OOPS on Native FV3 grid (FY22)
 - Use of all-sky information
 - Use of correlated observation errors
 - Higher model top and increased vertical resolution (FY19)
 - Use of time-lagged ensemble, waveband localization
 - Compute background error covariance based on FV3GFS forecasts (FY19)
 - Initialization through an IAU approach (FY19)

Testing Paradigm
- Cold start forecasts from GFS initial conditions
 - CTM (~13km) L64
 - Historical cases and near real-time (over a year’s worth of simulations)

Stochastic Physics
- Use of stochastic physics (SHUM+SPPT) show modest improvements in DA
- Comparisons shown with multiplicative inflation

Fit to Observations
- Fits to observations comparing FV3 (red) with operational GFS (black) for forecasts from the 00 UTC analyses as a function of lead time as well as the difference (lower panels). The 95% confidence threshold for a significance test (derived from a standard t-test) is also plotted in the lower panels.

Looking Forward
- Initialization through an IAU approach (FY19)
- Compute background error covariance based on FV3GFS forecasts (FY19)
- Use of time-lagged ensemble, waveband localization
- Higher model top and increased vertical resolution (FY19)
- Use of correlated observation errors
- Use of all-sky information
- Use of JEDI components e.g. UFO (FY20), OOPS on Native FV3 grid (FY22)