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Introduction — Observations in convective-scale NWP

What observations do we need for convective-scale DA?
N This time, we provide several answers
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EFSOI: Verification metrics
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: Observation operator into verification space
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: Model equivalent for verification

Following Kalnay et al. 2012
Reformulated by Sommer & Weissmann 2016
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Yveri : Observation used for verification
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Method — Ensemble sensitivity analysis (ESA)

The sensitivity S, of a forecast metric J to an initial analysis x; is defined by Ancell and

Hakim (2007) as
G _ cov(J, x;)
i var(x;)
X, :Independent analysis variable at grid point i [1 x N]

J : Dependent forecast variable (e.g. precipitation) [1 x N]
N :Ensemble size

How to compare a large set of quantities and forecasts?

1. Normalize with ensemble spread to get dimensionless correlations

2. Sum absolute correlation values over domain and all forecasts to get absolute
sensitivity

3. Normalize absolute sensitivities with total of all sensitivities to get the relative
sensitivity per quantity [%]
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Method — Experimental setups

SCALE-RM model (Japanese) COSMO-DE model (German)

* 1000 member * 40 member

* 15 km LETKF with downscaling to 3 km * 2.8 km grid spacing

* 350x250 grid points with 30 levels * 300x300 grid points with 50 levels

* Short period (3 days/ 10 x 14-h-forecasts) * Longer period (6 weeks/ 70 x 12-h- forecasts)

-> Note: Precipitation forecast metric J is coarse grained to boxes of 50x50 grid points
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Scale analysis
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Relative sensitivity

How to estimate sensitivities with a small ensemble size?
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* Red solid lines: Absolute sensitivities increase with decreasing ensemble size due to

spurious correlations (except for surface pressure)

* Red dashed lines: Confidence test reduces spurious correlations, but also removes

some weak correlations that are presumably real

* Blue solid line @ 1000 and blue dashed line @40: Similarity of relative sensitivity, some

overestimation of smaller relative sensitivities and underestimation of larger ones

* Given that some sensitivities extend across the domain, localization seems inappropriate
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Relative sensitivities (1000 vs 40)

* Relative sensitivities of surface variables
* 40 member ensemble with 95% confidence level gives similar results as 1000 member
* Largest sensitivity of surface pressure is related to a strong large scale forcing

28-30 Mai 2016 : 5 forecasts
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Lifetime of sensitivities (1000 vs 40 during 6-weeks)

* Both ensembles show similar results independent of ensemble size and model
* Sensitivity of surface pressure peaks at 7 hours lead time (40 member)
* Non-linearity: Sensitivities after 6 hours should be treated with caution (40 member)

28-30 Mai 2016 : 10 forecasts
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Relative Sensitivity [%]

28-30 Mai 2016 : 70 forecasts

Relative sensitivity per lead time
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Relative Sensitivity [%]
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Relative sensitivities for 6 week summer period (40 member)

Relative sensitivity per variable
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Ranking: 28-30 Mai 2016 : 70 forecasts all lead times
* Pressure levels with highest sensitivities:

UV & HY at 300hPa / T at 400hPa / RH&QV at 500hPa
* Surface pressure (PS), Zenit Total Delay (ZTD) and thermal radiation are the most
important surface quantities
* Precipitation has the highest sensitivity on SEVIRI WV channels
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Summary

Conclusions - Actual observation impact
* Impact of 3.3 million conventional obs. in a 6 week summer period was computed
* Revealed sensitivity to biases and the choice of the verification metric
* We recommend to use independent observations and different metrics for verification
* Observation impact in summer period:
- Surface pressure and upper air wind observations show largest beneficial impact

Conclusions - Potential impact

* Potential impact of observed quantities on the precipitation forecast was investigated
using different ensemble sizes (1000 - 40 member) and models (SCALE-RM/ COSMO-DE)

* Largest potential impact of surface pressure and tropospheric variables

* But on scales relevant for convective-scale DA, largest potential impact of hydrometeors
and boundary layer variables

* The impact of hydrometeor assimilation is potentially much longer lasting than in real DA

* The potential impact can be estimated in relative terms with a small ensemble size using
a confidence test, but some overestimation of smaller sensitivities

* Our study assumes that all quantities could be assimilated equally well
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