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Atmospheric predictability

Intrinsic Practical

Related to the loss of 
predictability due to errors in 
ICs and model physics that 

could be potentially resolved

Errors

Errors

Errors

Related to the non-linear nature 
of atmospheric dynamics: very 

small errors in ICs grow 
exponentially to result in a finite 

limit of atmospheric 
predictability

Chaotic behaviour 
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Lorenz (1969)
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1. Introduction to mesoscale 
predictabilityWhat do we know about intrinsic 

predictability?

• Predictability is scale-dependent

• Lorenz 1969, Lilly 1990, Kalnay 2003: predictability at scales ~ 10 
km is O(1h), at scales ~1000 km is O(10 days)

• Errors grow faster at convective scales than at synoptic scales 
(Hohenegger and Schar 2007)

• Error growth at convective scales is amplified by moist convection 
(Hohenegger and Schar 2007, Zhang et al. 2002)

• Once errors saturate at convective scale, they propagate upscale 
where they continue to grow – the three stage error growth model 
(Zhang et al. 2007, Selz and Craig 2015):

• 1st stage: error growth and saturation due to moist 
convective instability

• 2nd stage: geostrophic adjustment

• 3rd stage: continuing growth at synoptic scales through 
baroclinic instability



Intrinsic versus practical predictability

• While in some cases intrinsic predictability limitations 
can lead to a very rapid loss of forecasts skill (Zhang 
et al. 2003, Melhauser and Zhang 2012), generally 
practical predictability limitations are the main reason 
for forecast errors (Durran and Gingrich 2014).

• Most previous studies were based on a limited set of 
cases.

• Investigate the intrinsic and practical limitations 
for convection-allowing models using a large 
data set of storm-scale ensemble forecasts.

1. Introduction to mesoscale 
predictability



Model 
predictability of 
the atmospheric 

state
Predictability of the 

model state

Investigate the growth of very 
small IC perturbations in model 

simulations

Characterizing 
the growth of 
different types 

of model 
perturbations in 

model 
simulations

Comparing 
forecasts to 
observations
Evaluating 

forecast skill

2. Our experience in mesoscale 
predictabilityQuantify the limits of precipitation 

predictability

Intrinsic Practical



Methodology

• A statistical approach to studying predictability

• Use a large set of data

• Quantify predictability as a function of spatial 
scale

• Determine the role of different types of errors 
forensemble predictability

• Characterize the relationship between 
predictability limits and the environment

2. Our experience in mesoscale 
predictability



Large data set

2. Our experience in mesoscale 
predictability

Acknowledging Adam Clark (NSSL), 
Ming Xue (OU, CAPS) and 
Fanyou Kong (OU,CAPS)

Storm-scale ensemble forecasting system
WRF-based, 4-km  grid spacing, radar DA

Multi-physics, multi-model

Now more than 10 years of high-resolution ensemble forecasts during the 
severe weather season in the US.



Ensemble precipitation 
forecasts

Errors

Errors

Errors

Random IC 
perturbations

Random correlated 
IC perturbations - 

small-scale (12 km 
horizontal, 3 km 

vertical)

IC/LBC 
perturbations from 

regional-scale 
ensemble - 

resolution of 32-45 
km

Varied MP 
scheme

Varied PBL 
scheme

SKEB
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predictabili

ty limits

Practical 
predictabili

ty limits
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predictabili

ty limits
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Precipitation forecasts from 
CAPS SSEF.

Radar derived QPE.
Stage IV precipitation.

All remapped on the Stage IV 
grid using nearest neighbor 

interpolation.

2. Our experience in mesoscale 
predictability

Data set



Quantify predictability as a function of 
scale

• As mentioned before, Zhang et al. 2003 etc. – errors 
saturate with scale and forecast time

• Does this apply to our definitions of predictability and 
to our data set? 

• Determine the range of scales where predictability is 
lost: the decorrelation scale

2. Our experience in mesoscale 
predictability



2. Our experience in mesoscale 
predictability

The decorrelation scale

• Define the power ratio for a pair of precipitation fields:

• When the power ratio is 1, the two precipitation fields are fully 
decorrelated.

• The variance at a given scale is obtain by computing the power spectrum 
of precipitation using the Discrete Cosine Transform.

X, Y are 2D precipitation fields and VarX(λ) 
and VarY(λ) represent the variance of the 

fields at scale λ

Example of the power ratio for a pair 
of two precipitation forecasts, one 

unperturbed, one with IC/LBC 
perturbations.

At 10-hour lead time, the 
decorrelation scale is 103 km. This 
means that IC/LBC errors in this 

case cause predictability loss at 
scales smaller than 100 km after 

10 forecast hours!



The decorrelation scale as a function of forecast lead-time averaged over all cases 
of SE2008

2. Our experience in mesoscale 
predictability

The decorrelation scale as a function of forecast lead-time for one event



Other measures to quantify predictability

• The Normalized Root Mean Square Error:

• The Fractions Skill Score (FSS, Roberts and Lean 2005)

2. Our experience in mesoscale 
predictability

X, Y are precipitation fields of dimensions 
I and J.

This measure is also applied to band-pass 
components of the fields.

fX, fY are fraction fields



Results – the decorrelation scale

2. Our experience in mesoscale 
predictability

Results are presented for hourly 
rainfall accumulations and averaged 

for 22 cases during 2008
Predictability of the 

model state – effect of 
IC/LBC/PHYS errors



Results – the decorrelation scale

2. Our experience in mesoscale 
predictability

Results are presented for hourly 
rainfall accumulations and averaged 

for 22 cases during 2008

Model predictability of 
the atmospheric state 
– effect of IC/LBC/PHYS 
errors on forecast skill

Predictability of the 
model state – effect of 

IC/LBC/PHYS errors

Predictability is lost 
very rapidly. 

Significant difference 
between spread and 

skill.



The decorrelation scale - all years

Forecast error IC/LBC/PHYS+RC IC/LBC/PHYS MP

RC PBL RAND Radar DA SKEB

2. Our experience in mesoscale 
predictability

2008-2013 averages



The decorrelation scale - all years

Forecast error IC/LBC/PHYS+RC IC/LBC/PHYS MP

RC PBL RAND Radar DA SKEB

2. Our experience in mesoscale 
predictability

2008-2013 averages

Random perturbations: 0.5 K 
and 5 % humidity – larger than 

usually used for intrinsic 
predictability studies

IC/LBC errors most important – 
spread comparable to forecast 

error after 20 h.

MP perturbations most 
important PHYS perturbations

Practical predictability limits 
far from intrinsic predictability 

limits



2. Our experience in mesoscale 
predictability

Case-to-case variability

Palmer 1993

Predictability is not only scale-dependent, 
but also case-dependent.

Impossible to build the entire atmospheric 
attractor, so different indicators of where we 
are situated in the atmospheric attractor are 

necessary.



2. Our experience in mesoscale 
predictability

Where do the events situate in the atmospheric 
attractor?

• Use several indices to characterize the events:

• Fractional precipitation coverage

• The convective adjustment time scale (Done et al. 2006, 
Keil et al. 2014) - An indicator of whether convection is 
in equilibrium with the large-scale flow or not - proxy for 
strength of large-scale forcing.

Weakly forced

Strongly forced

Average the spatial convective-
adjusment time-scale over all 

regions of hourly rainfall 
accumulations larger than 1 mm.



2. Our experience in mesoscale 
predictability

Where do the events situate in the atmospheric 
attractor?



2. Our experience in mesoscale 
predictabilityRelate predictability to precipitation 

coverage and �c

• The decorrelation scale does not show any case-
dependence

• Case-dependence of spread and skill measures at 
large scales (more than ~200 km)

• Spread measures:



2. Our experience in mesoscale 
predictabilityRelate predictability to precipitation 

coverage and �c

Correlation coefficient 
between spread and 

precipitation coverage or 
�c.

Solid lines – IC/LBC/PHYS 
ensemble

Dashed lines – MP 
ensemble

Relationship is not 
statistically significant 

during the diurnal cycle 
precipitation minimum.

No apparent difference 
between the two types of 

ensembles

Forecasting skill at scales 
> 256 km shows more 
relation to event type 

than spread



Do the error sources considered in this system 
ever capture the entire forecast error? 

2. Our experience in mesoscale 
predictability

How does the effect of 
IC/LBC/PHYS/RC perturbations 

compare to forecast skill?

During the first 12 forecast hours 
the spread is insufficient.

After 24 hours, the errors 
considered generate sufficient 
spread, and at medium scale 

(128-256 km) the error caused by 
the perturbations is even larger 

than forecast error.
No relationship to the type of 

event.



Maybe the distribution of cases we have is not wide enough!
Averages for each case - total of 179 cases over 6 years

For most of the case, most of the 
variability in fractional precipitation 

coverage is explained by the 
diurnal cycle of precipitation.

2. Our experience in mesoscale 
predictability



Summary

• We were interested in characterizing the precipitation 
predictability limits by convection-allowing models.

• Indeed, predictability at small scales is short lived.

• Furthermore, while there seems to be some 
relationship between predictability at scales larger 
than ~200 km and type of event, predictability is 
always lost rapidly at convective scales.

• Despite the many types of errors sampled by the 
ensemble system used here, spread for short lead 
times (<12 h) is still insufficient.

3. Lessons learnt, caveats, 
implications



Impacts

• Serious implications of these findings:

• Small scale predictability always rapidly lost – what does this mean for 
data assimilation of storm scale observations? How long can the 
duration of the effect of assimilating such data be?

• Producing operational forecast products - information is lost rapidly at 
small scales, therefore, shouldn’t probabilistic forecasts of precipitation 
reflect that?  

• Schwartz and Sobash 2016: neighbourood approaches for producing 
POPs

• The neighbourhood size should change with forecast lead time – 
work in progress

• Already explored for lagrangian extrapolation nowcasting systems 
(ex. MAPLE , Germann and Zawadzki 2004)

• Careful interpretation of ensemble mean products, which become 
increasingly filtered with increasing forecast time.

3. Lessons learnt, caveats, 
implications



Caveats

• Main problem of our study: using data produced for other purposed 
made it difficult to control the experiment

• Only precipitation data available – How do predictability estimates 
differ when other variables are analyzed?

• Expecting less spread for other variables such as temperature 
and wind – problem for DA!

• Understanding the relationship between error growth in mass 
variables and error growth in precipitation is important

• No perfect knowledge of the IC perturbation structure which is needed 
to properly understand error growth

• Predictability estimates are sensitive to the model used for estimation

3. Lessons learnt, caveats, 
implications



To end the presentation

• An example of how difficult convective scale 
predictability could be
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This is a very extreme case – but what is the impact of other 
smaller anthropogenic perturbations such as rush hour traffic 

effects? 

Lorenz 1969: is the system represented by 
convection-allowing models non-

deterministic? How can we account for these 
stochastic effects?

Thank you!
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