

Ensemble initial conditions targeted at the convective scale

Jan Keller^{1,2}, Clarissa Figura^{1,3}, Andreas Hense³

¹Hans-Ertel-Centre for Weather Research, Bonn, Germany ²Deutscher Wetterdienst, Offenbach, Germany ³Meteorological Institute, University of Bonn, Germany

Motivation

- Convective events in LAMs
 - Forecasting has significantly improved
 - Correctly predicting location is largest issue

Motivation

- Convective-scale data assimilation
 - Observations, e.g., radar, satellites
 - Covariance structures and uncertainties

Enhance the representation of convective-scale uncertainties

 Previous work indicated self-breeding perturbations and ensemble transform methods to work well in extreme cases

- Methods to estimate uncertainty
 - Simple Bred Vectors from Self-Breeding (SBV)
 - Ensemble Transform Bred Vectors (ETBV)
 - Ensemble Singular Vectors (ESV)

Simple Bred Vectors

let $\mathbf{a}(t) = \mathbf{x}(t)$ and $\hat{\mathbf{x}}(t)$ $\mathbf{b}(t)$ with $\mathbf{y}(t) - \hat{\mathbf{y}}(t)$ $\mathbf{y}(t_{i+1}) = \mathcal{M}\mathbf{x}(t_i)$ then $\mathbf{x}(t_n) = \hat{\mathbf{x}}(t_n) + \mathbf{a}(t_n) = \hat{\mathbf{x}}(t_n) + \frac{\mathbf{b}(t_n)}{\|\mathbf{a}(t_{n-1})\|}$

e.g., Toth and Kalnay, 1993; 1997

Ensemble Transform

 $\mathbf{Z}_{\mathrm{ET}} = \mathbf{ZT}$

Ensemble Transformation is designed to make optimal use of the ensemble space as provided by \mathbf{Z}

e.g., Bishop and Toth, 1999

Ensemble Transform Bred Vectors (ETBVs)

 $\mathbf{A} = \mathbf{B}\widetilde{\mathbf{E}}\mathbf{\Lambda}^{-1/2}\mathbf{I}$

ETBVs can be easily derived from BVs by applying an Ensemble Transformation with the transformation matrix given as solution to

$$(\mathbf{B}^T \mathbf{M} \mathbf{B}) \widetilde{\mathbf{E}} = \widetilde{\mathbf{E}} \mathbf{\Lambda}$$

Keller et al., 2010

Ensemble Singular Vectors (ESVs)

 $(\mathbf{A}^T \mathbf{M} \mathbf{A})^{-1} (\mathbf{B}^T \mathbf{M} \mathbf{B}) \mathbf{E} = \mathbf{E} \mathbf{\Lambda}$

- Initial and forecast perturbations are used
- Determines the singular vectors in ensemble space
 i.e. fastest growing perturbations wrt the given ensemble

Yang et al., 2015

Case-Study Setup (1)

- COSMO LAM model at 2.8km (convection-permitting)
- 3 June 2014 afternoon with scattered convective cells

Results - Selfbreeding

Hans-Ertel-Centre for Weather Research 10

Results - Selfbreeding

Hans-Ertel-Centre for Weather Research 11

Results – Selfbreeding

INTERVAL 15 INTERVAL 30 INTERVAL 45 INTERVAL 60 CYCLE 1 CYCLE 5 CYCLE 9

Variables U,V

MEAN ERROR GROWTH

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8

INTERVAL 60

Results – Selfbreeding

INTERVAL 15

CYCLE 1 CYCLE 5 CYCLE 9

INTERVAL 45

INTERVAL 30

MEAN ERROR GROWTH

INTERVAL 60

Results – Selfbreeding

INTERVAL 15

INTERVAL 45

INTERVAL 30

Variable W

Case-Study Setup (2)

- Perform 6-hour forecasts
- Initial conditions from self-breeding cycles
- Perturbations of the single ensemble members were used as
 - SBVs
 - ETBVs
 - ESVs

Results – Relative Forecast Spread

Results – Relative Forecast Spread – ESV

Results – Relative Forecast Spread – ESV (CTRL)

Case-Study Setup (3)

- Use uncertainty structures in KENDA (LETKF)
 - Observations: Radar, Aircraft
- Perform 1-hour forecasts for collecting observation increments from
 - Original perturbations
 - ESVs in relation to single members as well as the control
- Perform free forecasts from new analysis

Results – AN-FG from LETKF DA

Results – AN-FG from LETKF DA

Results – Forecasts from LETKF DA

Results – Forecasts from LETKF DA

Conclusions

- Current implementation of SBVs
 - Weak effect on ensemble spread for the first hour
 - Impact on spread after 4 hours of free forecast
- ESVs from control show much stronger impact on ensemble spread in the first 2 forecast hours
- For DA purposes in LETKF:
 - SBVs from single members (and their transformations) do not benefit LETKF DA
 - ESVs from control have a much bigger impact and indicate potential to enhance the short term forecast

Ensemble initial conditions targeted at the convective scale

Jan Keller^{1,2}, Clarissa Figura^{1,3}, Andreas Hense³

¹Hans-Ertel-Centre for Weather Research, Bonn, Germany ²Deutscher Wetterdienst, Offenbach, Germany ³Meteorological Institute, University of Bonn, Germany