Treating sample covariances for use in strongly-coupled atmosphere-ocean data assimilation

Amos S. Lawless, Polly J. Smith, Nancy K. Nichols

Funded by U.K. Natural Environment Research Council

Aims

- Strongly-coupled variational data assimilation for coupled systems requires the specification of cross-domain forecast error covariances.
- Ensembles can be used to estimate these, but sample covariances are typically rank deficient and/or ill-conditioned.

How can we obtain a well-conditioned matrix that retains important cross-covariance information?

Condition number

We recall that for a symmetric positive definite matrix **S**, the condition number is given by

$$\kappa(\mathbf{S}) = \lambda_{\max}(\mathbf{S})/\lambda_{\min}(\mathbf{S})$$

Matrix modification methods

- 1. Matrix reconditioning
 - Specify a required condition number $\kappa_{\rm tol}~$ and increment all eigenvalues by a fixed amount $\lambda_{\rm inc}~$ such that

$$\frac{\lambda_{\max} + \lambda_{inc}}{\lambda_{\min} + \lambda_{inc}} = \kappa_{tol}$$

 Note that reconditioning the covariance matrix in this way is not the same as reconditioning the correlation matrix.

Matrix modification methods

2. Localization

National Centre for

Earth Observat

- Form Schur product of localization matrix and ensemble covariance matrix.
- For coupled DA need to think carefully how to apply to multivariate blocks and sub-matrices

$$\mathbf{C} = \begin{pmatrix} \mathbf{C}_{\mathbf{A}\mathbf{A}} & \mathbf{C}_{\mathbf{A}\mathbf{O}} \\ \mathbf{C}_{\mathbf{A}\mathbf{O}}^{\mathsf{T}} & \mathbf{C}_{\mathbf{O}\mathbf{O}} \end{pmatrix}$$

• We apply separate localization to each sub-matrix.

Idealised system

single-column, coupled atmosphere-ocean model

Atmosphere

simplified version of the ECMWF single column model adiabatic component + vertical diffusion (no convection) 4 state variables on 60 model levels (surface to ~0.1hPa) forced by large scale horizontal advection

Ocean

K-Profile Parameterisation (KPP) mixed-layer model based on the scheme of *Large et al* 4 state variables on 35 model levels (1-250m) forced by short and long wave radiation at surface

Ensemble of 4D-Vars

Estimate background error covariance from a ensemble of perturbed strongly coupled $y + \delta^{\circ}$ 4D-Var analyses xb+ep x^b+e^b xp+ep Analysis Analysis Forecast Analysis Forecast Forecast x^b₩η^b x^b+|n^b x^b+n^b Analysis Analysis Forecast Analysis Forecast Forecast $\mathbf{y} + \boldsymbol{\varepsilon}^{\mathrm{o}}$ **Background differences**

Figure 3: Schematic illustration of the analysis-ensemble method of generating fields of background difference. adapted from Fisher 2003

Differences between pairs of background fields have same **correlation** structure as background error (but twice the variance)

Example correlations, 500 members December 2013, NW Pacific

Smith et al. (2017)

ty of

💎 Readi

aopun (ini)

achar (m)

Full ensemble correlation matrix

Reconditioned correlation matrix, *k*=10⁴

Reconditioned

Difference from original

Condition number reduced and correlation structure retained, but so is sampling noise.

Reconditioned covariance matrix, *k*=10⁴

Structure of ocean cross correlations and atmosphere-ocean cross correlations is lost.

Localization

We define a scaled distance between an atmosphere and ocean point (similar to Frolov *et al., 2016).*

$$\hat{d}(z_a(i), z_o(j)) = \left(\frac{z_a(i)}{L_a} + \frac{z_o(j)}{L_o}\right)$$

The same localization length scale is used for each sub-matrix in the atmosphere and same in the ocean – Helps keep matrix positive definite.

Localization – La=7500m, Lo=75m

Some sampling error removed, condition number O(10⁹).

Localization – La=3750m, Lo=37.5m

Halving length scales removed more sampling error removed, but strength of cross-correlations reduced. Condition number O(10⁸).

Localization – La=200m, Lo=2m

To obtain condition number $O(10^4)$ we need to make lengthscales so short that correlations are destroyed.

Reconditioning v localization

So far we have seen

- Reconditioning reduces condition number, but retains sampling noise.
- Localization reduces sampling noise, but matrix is still ill-conditioned.

Can we obtain the best of both worlds by first reconditioning and then localizing?

Reconditioning then localization

- ✓ Sampling noise removed
- ✓ Cross-correlation signals retained
- ✓ Matrix is well conditioned $O(10^4)$

Summary

- Reconditioning of correlation matrix can reduce condition number, but sampling noise retained.
- Important to treat correlation matrix rather than covariance matrix.
- Localization can reduce sampling error, but matrix still ill-conditioned.
- Combination of both leads to a well-conditioned matrix with sampling error removed.

Smith, P.J., Lawless, A.S. and Nichols, N.K. (2018), Treating sample covariances for use in strongly coupled atmosphere-ocean data assimilation. *Geophysical Research Letters,* 45, doi: 10.1002/2017GL075534.

