Coupled Earth System Assimilation in NWP at ECMWF

Philip Browne, Patricia de Rosnay, Hao Zuo

ECMWF Earth System Assimilation Section, Coupled Assimilation Team

7 March 2018

©ECMWF 06/03/18

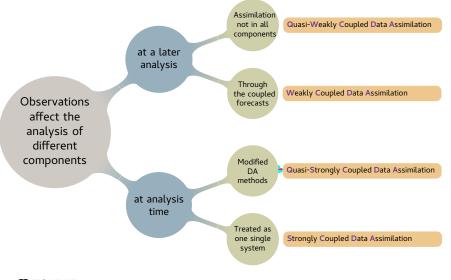
Components of ECMWF forecasts

Components of ECMWF's Earth system. Along with the atmosphere, there are the ocean, wave, sea ice, land surface, snow, lake, and river models.

Ocean-Sea-Ice-Atmosphere Coupling

Currently

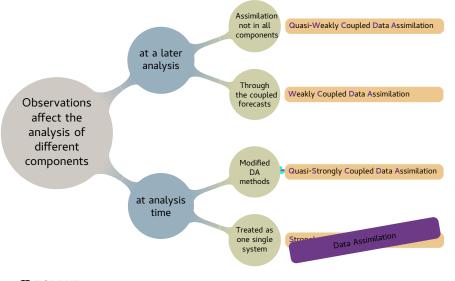
High resolution 10-day forecast has no ocean component All other forecasts are coupled


- ensemble at 10 days
- extended range
- seasonal forecasts

From June 2018

All forecasts will be coupled to the ocean

Coupled DA nomenclature


We follow the terminology of Penny et al. 2017:

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Coupled DA nomenclature

We follow the terminology of Penny et al. 2017:

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Outline

Current system

Weakly coupled land-surface-atmosphere assimilation

Snow Soil moisture

Weakly coupled ocean-atmosphere assimilation at ECMWF WCDA through Sea Ice WCDA through Sea Surface Temperature

Quasi-strongly coupled ocean-atmosphere assimilation at ECMWF

Current system

Weakly coupled land-surface-atmosphere assimilation

Snow Soil moisture

Weakly coupled ocean-atmosphere assimilation at ECMWF

WCDA through Sea Ice WCDA through Sea Surface Temperature

Quasi-strongly coupled ocean-atmosphere assimilation at ECMWF

Atmosphere

Hybrid 4D-Var with 12 hour assimilation window Uses OSTIA SST and Sea Ice Concentration (SIC) as lower boundary conditions

Land surface

Weakly coupled to the atmosphere using 2D-OI & SEKF.

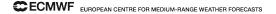
Waves

Weakly coupled to the atmosphere using 2D-OI.

Ocean and sea ice

3D-Var FGAT with 8–12 day assimilation window forced by the atmospheric analysis.

Current system


Weakly coupled land-surface-atmosphere assimilation

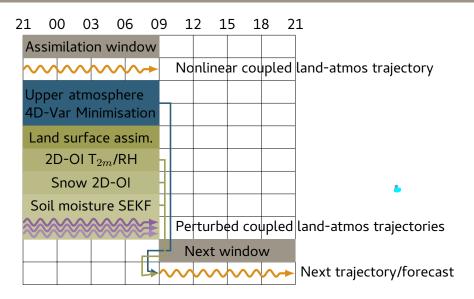
Snow Soil moisture

Weakly coupled ocean-atmosphere assimilation at ECMWF

WCDA through Sea Ice WCDA through Sea Surface Temperature

Quasi-strongly coupled ocean-atmosphere assimilation at ECMWF

Justification


- Vertical correlations dominate land surface processes. Therefore each grid point is analysed independently. Land data assimilation is a 2D problem, whereas the atmosphere DA is a 4D problem.
- Weak coupling gives flexibility to run land analysis without the expensive 4D-Var component (ERA-Land type).

Weaknesses

Increments related to fast coupled processes (e.g. precip/soil moisture) are potentially inconsistent at the interface.

ECRWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Weakly coupled land-surface-atmosphere overview

Snow depth assimilation

Snow model

Dutra et al. 2010, Balsamo et al. 2009

Component of H-TESSEL Snow water equivalent (m) Snow density (ρ)

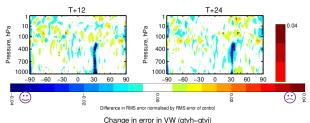
prognostic variables

Single layer snowpack

Observations

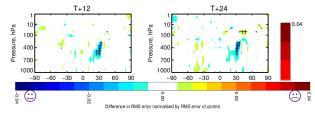
Conventional snow depth data: SYNOP and National networks

Snow cover extent: NOAA NESDIS/IMS daily product (4km)


We use a 2D OI for snow assimilation.

The 2D structure function is a function of both horizontal and vertical separation - snow at two (horizontally) nearby points are less related if one point is at sea level and the other on a mountaintop.

Impact of assimilating snow cover in Himalayas


Change in error in R (gtvh-gtvi)

1-Oct-2011 to 1-Jun-2012 from 470 to 489 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

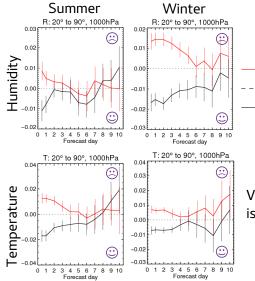
Impacts of snow assimilation are felt throughout the troposphere

1-Oct-2011 to 1-Jun-2012 from 470 to 489 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

This is due to change in albedo and its influence on the whole atmospheric column

$$x^{a} = x^{b} + K(y - \mathcal{H}(x^{b})) \qquad K = PH^{T}(HPH^{T} + R)^{-1}$$

$$x = \begin{bmatrix} SM_{\ell_1} \\ SM_{\ell_2} \\ SM_{\ell_3} \end{bmatrix} \qquad y = \begin{bmatrix} T_{2m}^* \\ RH_{2m}^* \\ ASCAT_{sm} \end{bmatrix} \qquad \mathcal{H}(x^b) = \begin{bmatrix} T_{2m} \\ RH_{2m} \\ SM_{top} \end{bmatrix}$$


* pseudo-observations computed by 2D-OI.

The Jacobians ${\cal H}$ are computed via perturbed trajectories - i.e. a finite difference approximation.

Future plans are to approximate H directly from the EDA (Ensemble of Data Assimilations)

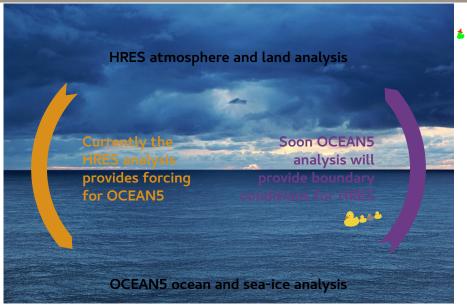
Impact of (weakly coupled) soil moisture analysis on NWP

— No soil moisture analysis --- zero line: IFS cycle 40r1 (2013) — IFS cycle 41r1 (2015) Revised σ_o

Very large impact of soil moisture initialisation on near-surface weather forecast

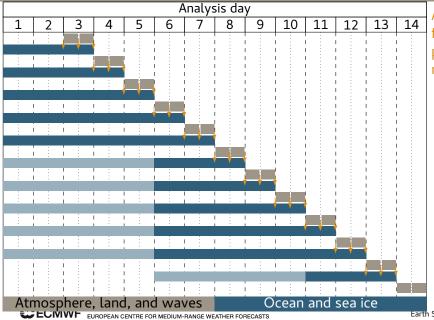
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Current system

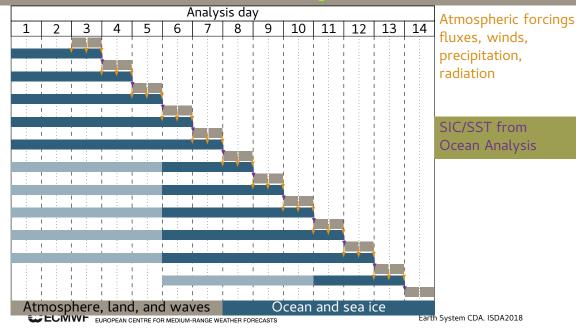

Weakly coupled land-surface-atmosphere assimilation Snow Soil moisture

Weakly coupled ocean-atmosphere assimilation at ECMWF WCDA through Sea Ice WCDA through Sea Surface Temperature

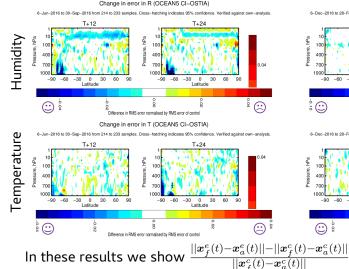
Quasi-strongly coupled ocean-atmosphere assimilation at ECMWF



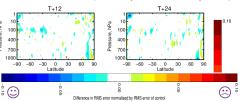
Weakly coupled assimilation concept


CECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

WCDA Information Flow


Atmospheric forcings fluxes, winds, precipitation, radiation

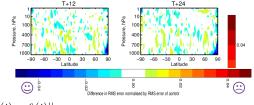
WCDA Information Flow



WCDA Sea Ice Concentration impact on Humidity and Temperature

Southern hemisphere winter

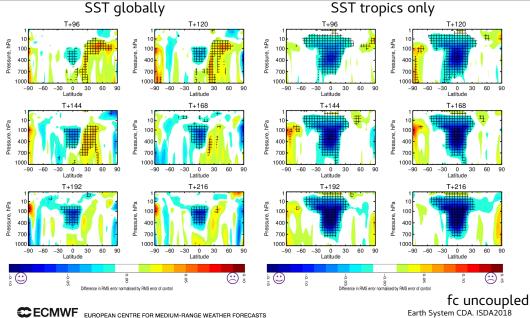
Northern hemisphere winter



Change in error in R (Coupled Sea Ice-OSTIA Sea Ice)

6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

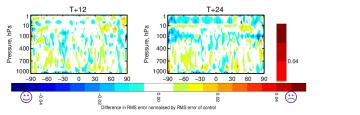
Change in error in T (Coupled Sea Ice-OSTIA Sea Ice)


6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

fc uncoupled

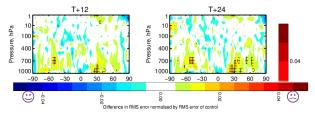
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

WCDA Sea Surface Temperature impact on Geopotential



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

WCDA SST impact on Humidity and Temperature


Change in error in R ((OCEAN5 SST OSTIA CI)-(OSTIA SST OSTIA CI))

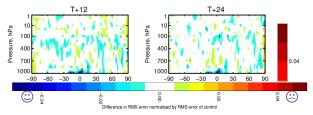
6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

Change in error in T ((OCEAN5 SST OSTIA CI)-(OSTIA SST OSTIA CI))

6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

fc uncoupled

WCDA SST in tropics only impact on Humidity and Temperature


Change in error in R (Summer analysis blended SST-control)

6-Jun-2017 to 31-Aug-2017 from 154 to 173 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

Change in error in T (Summer analysis blended SST-control)

6-Jun-2017 to 31-Aug-2017 from 154 to 173 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

fc coupled

Current system

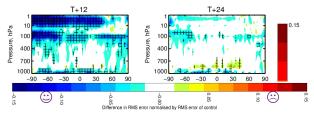
Weakly coupled land-surface-atmosphere assimilation

Snow Soil moisture

Weakly coupled ocean-atmosphere assimilation at ECMWF

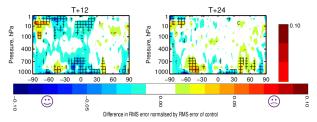
WCDA through Sea Ice WCDA through Sea Surface Temperature

Quasi-strongly coupled ocean-atmosphere assimilation at ECMWF


We follow the approach taken in the CERA-20C (Laloyaux et al. 2016) and CERA-SAT reanalyses.

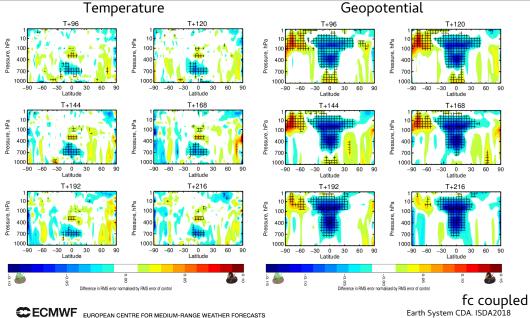
- Coupled forecasts
- Coupled non-linear trajectories
- Separate minimisations:
 - Upper air 4D-Var
 - Ocean and sea-ice 3D-Var FGAT
- Assimilation windows aligned with the atmosphere; 12 hour window

QSCDA (Outer loop coupling) impact on Humidity and Temperature


Change in error in R (Winter analysis coupled assimilation-control)

6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

Change in error in T (Winter analysis coupled assimilation-control)


6-Dec-2016 to 28-Feb-2017 from 150 to 169 samples. Cross-hatching indicates 95% confidence. Verified against own-analysis.

fc coupled

QSCDA Medium-range impact on Temperature and Geopotential

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

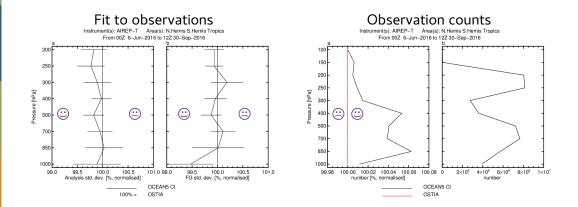
Conclusions

- At ECMWF we have to initialise coupled models
- Progressively more levels of assimilation coupling are being targetted for operational NWP
- Weakly coupled land-surface-atmosphere assimilation has been successful for improving NWP
- Ocean-atmosphere weak coupling through sea-ice field will be first, followed by SST coupling in the tropics
- Global ocean-atmosphere WCDA and QSCDA will require improvements to the ocean model to be used operationally
- QSCDA needs further research in terms of ocean observation usage/latency and drifts

QSCDA for Hurricanes Irma and Jose

Coupled assimilation

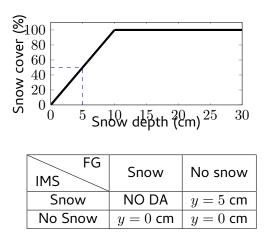
Uncoupled analysis (OSTIA)

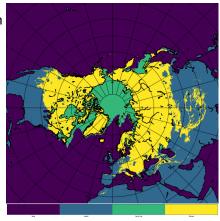

References

Balsamo, Gianpaolo et al. (2009). "A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System". In: Journal of Hydrometeorology 10.3, pp. 623–643. ISSN: 1525-755X. DOI: 10.1175/2008JHM1068.1. URL: http://journals.ametsoc.org/doi/abs/10.1175/2008JHM1068.1.
De Rosnay, Patricia et al. (2015). Snow data assimilation at ECMWF Snow data assimilation at ECMWF. DOI: 10.21957/lkpxq6x5.
Dutra, Emanuel et al. (2010). "An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation". In: Journal of Hydrometeorology 11.4, pp. 899–916. ISSN: 1525-755X. DOI: 10.1175/2010JHM1249.1.
Laloyaux, Patrick et al. (2016). "A coupled data assimilation system for climate reanalysis". In: Quarterly Journal of the Royal Meteorological Society 142.694, pp. 65–78. ISSN: 1477870X. DOI: 10.1002/qj.2629.
Penny, Stephen G et al. (2017). Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges and Recommendations. Tech. rep. World Meteorological Organisation WWRP 2017 - 3.

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Extra slides


WCDA Sea Ice Concentration impact on AIREP-T observations


Assimilation of IMS srlow cover

 \blacktriangleright IMS snow cover (SC) means SC> 50%

No quantitative information on snow depth

IMS product 20180226

De Rosnay et al. 2015