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➢ Additive inflation:

operational = 0.75

e.g., = 0.95

➢ Relaxation method: 
1. Relaxation to prior perturbations (RTPP, Zhang et al. (2004))

➢ Kilometre-scale ENsemble Data Assimilation (KENDA) system 
operationally run at DWD since May 2016 (Schraff et al. (2016))

➢ Data assim. scheme: Local Ensemble Transform Kalman Filter (LETKF)
➢ “Sufficient” background (analysis) spread      ( ) to represent 
sampling error (due to limited size of ensemble) and model error:

2. Relaxation to prior spread (RTPS, Whitaker and Hamill (2012))

<=>

(Bick et al.  (2016))

Currently in KENDA: random samples of climatological background error 
covariances from global EnVar data assimilation system for ICON.
We call it “large-scale” additive inflation, denoted by “AIL”, 
operational   = 0.1

Background information:

➢ Adaptive multi. inflation (Anderson (2008)):   
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Motivation

“ when model error is the dominant 
source of unrepresented background 
errors, additive inflation alone 
outperforms any combination of RTPS 
and additive inflation.”

Fig.: Contours of the ensemble 
mean background error using  
combinations of AIL and RTPS 

Whitaker and Hamill (2012) compare combinations of AIL (based on truncation error 
of 12-h forecast) with RTPS using two-level primitive equation global model. 
Ensemble size is 200, so sampling error is very small  

   
   

   
  

A
IL
 

      RTPS

Model error is prevailing at convective-scale 

Question: AIL, RTPP/RTPS or else for convective-scale data assimilation?
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 Outline

  1. Comparison of AIL, RTPP and combination

  2. Comparison of AIL, RTPS and combination

  3. Introduction of additive inflation based on model truncation error for KENDA   

  4. Conclusion and outlook
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Period: 00:00 UTC 27 May 2016 – 00:00 UTC 03 June 2016

Weather situation: atmospheric blocking, stationary thunderstorms

Observations: conventional data (AIREP, TEMP, PILOT, SYNOP) + 
                         radar reflectivity

Data assim. scheme: LETKF (also for radar reflectivity, using forward operator
EMVORADO (Zeng et al. (2016))

Assimilation window: one hour

Size of ensemble: 40 members, and 20 members are used for 6-h ensemble 
forecasts, initiated at 10, 11, …, 18:00 UTC

Localization: adaptive horizontal localization for conventional data, constant 
horizontal localization (16 km) for reflectivity

Observation error: 10 dBZ for reflectivity

Experimental design:
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Study I: Comparison of AIL and RTPP  (spread skill ratio & RMSE) 
E_RP0.75 : RTPP (      = 0.75) only;   E_AIL0.10: AIL (      = 0.1) only

Verification of first guess ensemble against Radial Wind within assim. cycles

E_AIL0.10

E_AIL0.10RP0.75

E_RP0.75

E_AIL0.10

E_AIL0.10RP0.75

E_RP0.75

[m/s]

better than

better than

E_AIL0.10RP0.75: AIL (     = 0.1) + RTPP (     = 0.75)
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Study I: Comparison of AIL and RTPP (RMSE of ensemble forecast) 

E_AIL0.10 E_AIL0.10RP0.75E_RP0.75

Verification of 6-h ensemble forecast against SYNOP

   

   

   

   

     

    

    

RH2M T2M TD2M Wind speed
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Study I: Comparison of AIL and RTPP 
(Fraction skill score (FSS) of reflectivity in ensemble forecast) 

   

   

   

   

 

forecast time in hours 

E_AIL0.10

E_AIL0.10RP0.75

E_RP0.75

FSS with scale of 30 km for different thresholds 30 and 40 dBZ: the higher, the better 

E_AIL0.10

E_RP0.75

E_AIL0.10RP0.75
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Study I: Comparison of AIL and RTPP 
(reflectivity composite in initial time & forecast) 

Obs E_AIL0.10 E_RP0.75

Initial 
 time

3 h

14:00 30 May, 2016

dBZ

1. Column:
Reflectivity 
composite

2.&3. Columns:
How much 
percent of 
ensemble 
members 
exceed 30 dBZ



  

10

Study I: Comparison of AIL and RTPP 
(Fraction skill score of precipitation forecast) 

   

   

   

   

     

    

    
E_AIL0.10

E_AIL0.10RP0.75

E_RP0.75

12:00 UTC 16:00 UTC

FSS for different precip. rate thresholds 0.1, 1.0 & 5.0 mm/h and scales 14,…, 560 km 

0.1 mm/h: E_RP0.75 E_AIL0.10 E_AIL0.10RP0.75

1.0 mm/h: E_RP0.75E_AIL0.10 E_AIL0.10RP0.75

5.0 mm/h: E_RP0.75E_AIL0.10 E_AIL0.10RP0.75

E_RP0.75E_AIL0.10 E_AIL0.10RP0.75

E_RP0.75E_AIL0.10 E_AIL0.10RP0.75

E_RP0.75E_AIL0.10 E_AIL0.10RP0.75

1
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Study II: Comparison of AIL and RTPS  (spread skill ratio & RMSE) 
E_RS0.95 : RTPS (      = 0.95) only;   E_AIL0.10 : AIL (     = 0.1) only

Verification of first guess ensemble against Radial Wind within assim. cycles

 

Verification of first guess ensemble against Radial Wind within assim. cycles

E_AIL0.10

E_RS0.95

E_AIL0.10RS0.95

better than

better than

[m/s]

 E_AIL0.10

E_AIL0.10RS0.95

E_RS0.95

E_AIL0.10RS0.95: AIL (     = 0.1) + RTPS (     = 0.95)
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E_AIL0.10 E_AIL0.10RS0.95E_RS0.95

Verification of 6-h ensemble forecast against SYNOP

   

   

   

   

     

    

    

RH2M T2M TD2M Wind speed

Study II: Comparison of AIL and RTPS (RMSE of ensemble forecast) 
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Study I: Comparison of AIL and RTPS 
(Fraction skill score (FSS) of reflectivity in ensemble forecast) 

forecast time in hours 

FSS with scale of 30 km for different thresholds 30 and 40 dBZ: the higher, the better 

E_AIL0.10

E_RP0.75

E_AIL0.10RS0.95 E_AIL0.10RS0.95

E_AIL0.10

E_RS0.95
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Study II: Comparison of AIL and RTPS 
(Fraction skill score of precipitation forecast) 

   

   

   

   

     

    

    

FSS for different precip. rate thresholds 0.1, 1.0 & 5.0 mm/h and scales 14,…, 560 km 

0.1 mm/h: E_RS0.95 E_AIL0.10 E_AIL0.10RS0.95

1.0 mm/h: E_RS0.95E_AIL0.10 E_AIL0.10RS0.95

5.0 mm/h: E_RS0.95E_AIL0.10 E_AIL0.10RS0.95

E_RS0.95E_AIL0.10 E_AIL0.10RS0.95

E_RS0.95E_AIL0.10 E_AIL0.10RS0.95

E_RS0.95E_AIL0.10 E_AIL0.10RS0.95

11

E_AIL0.10
E_RS0.95

E_AIL0.10RS0.95
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Introduction of additive inflation based on model truncation error
for KENDA (Whitaker and Hamill (2012))  

➢ The refinement of the horizontal resolution improves the convective-scale precip. 
forecasts (e.g., Clark et al. (2016)) 

➢ Creation of sample archive for model truncation error

➢ Approach: choose t = 1 hour,    

      samples represent unresolved/small-scale model error
We call it “small-scale” additive inflation, denoted by “AIS” 

➢ Model truncation error is one of important sources of model error 

2014
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Introduction of additive inflation based on model truncation error 

➢ Approach: choose t = 1 hour,    

(Histogram of model error samples)

T qu v
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E_AIL0.10: AIL (     = 0.1) only
E_AIL0.10AIS1.25: AIL (     = 0.1) + 
                                AIS (     = 1.25) with u, v, T, q

v 
perturbed

Verification of first guess ensemble against Radial Wind within assim. cycles

E_AIG0.10
E_RS0.9
5

better than

[m/s]

Study III: Comparison of AIL and AIL+AIS(spread skill ratio & RMSE)  

Verification of first guess ensemble against Radial Wind within assim. cycles

[m/s]

E_AIL0.10

E_AIL0.10AIS1.25

E_AIL0.10AIS1.25

E_AIL0.10

S



  

18

Study III: Comparison of AIL and AIL+AIS 
(Fraction skill score of precipitation forecast) 

   

   

   

   

     

    

    

FSS for different precip. rate thresholds 0.1, 1.0 & 5.0 mm/h and scales 14,…, 560 km 

0.1 mm/h: E_AIL0.10AIS1.25

1.0 mm/h: 

5.0 mm/h: 

E_AIL0.10

E_AIL0.10AIS1.25 E_AIL0.10

E_AIL0.10AIS1.25 E_AIL0.10

E_AIL0.10AIS1.25 E_AIL0.10

E_AIL0.10AIS1.25 E_AIL0.10

E_AIL0.10AIS1.25 E_AIL0.10

1

E_AIL0.10

E_AIL0.10AIS1.25
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Conclusion and Outlook 

Conclusion:

1. Large-scale additive inflation alone outperforms RTPP, RTPS and combination 
both in cycling and short-term precip. forecast for convective-scale data assimilation

2. Small-scale additive inflation based on model truncation error further improves 
large-scale additive inflation for short-term precip. forecast 

Outlook:

1. To tune small-scale additive inflation

2. To compare small-scale additive inflation with warm bubbles and 
stochastic boundary layer perturbations

  3. Papers in preparation:
Y. Zeng, T. Janjic,  A. de Lozar, U. Blahak, M. Sommer, H. Reich, A. Seifert, 2018: Representation of 
model error for data assimilation on convective scale. Part I: Additive noise based on model 
truncation errors.

Y. Zeng, T. Janjic, A. de Lozar, U. Blahak, A. Seifert, S. Rasp, G. C. Craig, 2018: Representation of 
model error for data assimilation on convective scale. Part II: Comparison of additive noise and 
differently specified boundary layer uncertainties.
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Thank you for your attention
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Surface pressure tendency  of during one day cycling
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