6th ISDA, 5-9 March 2018, Munich, Germany

Data assimilation of GNSS Zenith Total Delays in KMA convective scale model

Eun-Hee Kim, Eunhee Lee, Seungwoo Lee, and Yong Hee Lee

Contents

- Introduction
- Current status of GNSS data
- Ground-based GNSS data assimilation in convective scale model
 - Quality control and bias correction
 - Impact
 - Observation error
 - processing in very-short range model
- Summary and Future Plans

KMA Operational NWP system(Feb. 2018)

KMA's operational models are based on Unified Model

Global(GDAPS)

- Resolution N768L70(UM) (~17km / top = 80km)
- Target Length 288hrs (00/12UTC) 87hrs (06/18UTC)
- Initialization: Hybrid Ensemble 4DVAR

Global EPS

- Resolution N400L70(UM) (~32km/ top = 80km)
- Target Length: 288hrs
- Members: 49

Local(LDAPS)

- Resolution
 1.5~4km L70(UM)
 - (1188×1148 / top=39km)
- Target Length: 36hrs
- Initialization: 3DVAR

Local EPS

- Resolution
 3km L70(UM)
- $(460 \times 482 / top = 39 km)$
- Target Length: 72hrs
- Members: 13

Regional(RDAPS)

- Resolution
 12kmL70(UM)
 - $(0.11^{\circ} \times 0.11^{\circ} / \text{top} = 80 \text{km})$
- Target Length: 87hrs (6 hourly)
- Initialization: 4DVAR

KMA convective scale model

- KMA's operational models are based on Unified Model
- * LDAPS(Local Data Assimilation and Prediction System)

- Model
 - UM vn10.1k (ENDGame)
 - Area, resolution
 - grid number: 1,598 (E-W) X 1,718 (S-N)
 - resolution: 1.5~4 km (Variable grid), DA 3 km, 70 levels
 - Forecast time (cycle)
 36 hours (3 hourly)
 - DA system: <u>3DVAR(FGAT, IAU)</u>
 surface, sonde, radar, aircraft, Scatwind (± 90 min cutoff time)
 - GNSS, AMSU-B, TC Bogus (added '18.1)
 - **Operation**: since July 2016

Observation usage in LDAPS

120°E

130°E

1.40°E

150°E

100%E

110°E

120°E

130~

140"E

150°E

120"E

130%

140°E

150°E

Surface(synop, ship, buoy, metar), Sonde(temp, pilot, windprofiler), Radar(radial velocity),

 $\textbf{Aircraft}(amdar), \ \textbf{Scatwind}(ASCAT) \rightarrow \textbf{Ground-GNSS}, \ \textbf{AMSU-B}$

✤ 3 hourly cycling 3D-Var: lack of available observation, need more satellite DA

What is the GNSS?

- Global Navigation Satellite System
 - GPS (United States), GLONASS (Russian Federation),
 Galileo (European Union), BeiDou (China)
 - The purpose is to calculate the position of the GPS receiver
 - The signal is delayed due to the amount of water vapor

Zenith Total Delay

$$ZTD = 10^{-6} \int_{z=0}^{z=\infty} N dz$$

 $N(refractive) = \frac{k_1 p_d}{T} + \frac{k_2 p_v}{T} + \frac{k_3 p_v}{T^2}$

Refractivity exponential decay with height

GPS-satellite curved path = \$ G= geometrical direct line path **GPS-receiver** ZTD k: constant (Sm th and W entraub , 1953) p_d : partial of dry air pressure p_{12} : partial of water vapor pressure

T: absolute tem perature

(Bevis et al., 1994)

Current GNSS Usage at the KMA

Purpose

- Ground-based GNSS: moisture information in the lower level \rightarrow improved precipitation
- GNSS-RO: atmospheric upper layer \rightarrow improved synoptic field
- Status
- Using ground-based GNSS data and planed GNSS-RO data in local model

Data spices		Global	Regional	Local	Very-short
Ground based GNSS (ZTD)	1 hourly	0	-	O ('18.1)	-
	15 minutes	-	-	-	Planed ('18.5)
GNSS-RO (Bending angle)	COSMIC 1~6	0	0	Planed ('18.5)	-
	Metop-A/B	0	0		-
	TanDEM-X TerraSAR-X Grace-B	O ('17.10)	-		-
	KOMPSAT-5	Planed	-		-

✓ Challenge : global observation speices which covers local domain assimilated

ground-based GNSS operation

- MSC/KMA receives raw signal data from several domestic GNSS networks of around 100 stations over the Korean Peninsular
- ✤ 40 sites operationally used in Jan. 2018 for local model
- * 106 sites are testing for quality control and impact of observation error

KASI : Korea Astronomy and Space Science InstituteNGII : National Geographic Information InstituteNMSC : National Meteorological Satellite CenterNMPT : National Maritime PNT Office

Quality Control

Comparison to PWV of ground-based GNSS and Sonde stations

- Improvement of data quality by improving fixed sites (Courtesy of NMSC)
- ✤ ZTD calculation stability and improvement of O-B
- Static bias correction(1 month mean of O-B)

✓ Through comparison of the PWV with Sonde, the quality of GNSS data is reliable

KASI vs. RS	NMC vs. RS		
Bias= 0.5	Bias= -0.5		
RMSE= 5.8	RMSE= 5.0		
Corr= 0.86	Corr= 0.91		

Quality Control

- Comparison to PWV of ground-based GNSS and Sonde stations
- Improvement of data quality by improving fixed sites (Courtesy of NMSC)
- ✤ ZTD calculation stability and improvement of O-B
- Static bias correction(1 month mean of O-B, remove outlier ±0.1)

Impact of Ground-based GNSS

- By adding GNSS data, the differences ZTD of between observation and analysis are reduced
- The improvement of 850 hPa Temperature in July 2016
- Improved precipitation forecast performance using spatially dense GNSS data

✓ The analyses of GNSS DA match the GNSS ZTD observations better than without GNSS cycle

Impact of Ground-based GNSS

- By adding GNSS data, the **differences** ZTD of between observation and analysis are **reduced**
- The significant improvement of lower tropospheric humidity field and rainfall
- Improved precipitation forecast performance using spatially dense GNSS data

Equivalent Threat Score of Rainfall

3% improvement

RH(Jul. 2016)

✓ Positive impact for heavy rainfall than weak rainfall

<1 hour accumulated precipitation>

✓ STN #80 shows better agreement with observation than STN #35

Observation error

Observation error calculation for 15 domestic sites (previous LDAPS)

250

Observation error estimation and sensitivity experiment of GNSS

 $\mathbf{R} = E((y - H(x_a))(y - H(x_b))^T)$

0.030

August 2014

(Desroziers et al., 2005)

Observation error covariance estimation method using statistical values of innovation and analysis residual

<Configure of sensitivity experiment>

QC for Very-short range forecast model

- Diagnosis of data quality at 50 stations every <u>15 minutes(± 30 min cutoff time)</u>
- Static bias correction(1 month mean of O-B, remove outlier ±2σ each station)
- Seasonal experiments are in progress

Ongoing activities for CS model

- Estimation of observation error covariance
 - Diagnosis approach (Desrozier et al., 2005, Hollingsworth and Lönnberg, 1986)
- Bias Correction
 - Ground-GNSS(Sánchez arriola et al., 2016), Aircraft, Radiance(IASI)

Poster(1.5): Hee-Jung Kang

- Add available data
 - **15 minutes** ZTD \rightarrow very-short range forecast model(VDAPS)
 - polar-orbiting **satellite**(IASI, ATMS, GNSS-RO, etc)
 - Intensive observation data for PyeongChang2018(Sonde, dropsonde, radar, etc)

Summary and Plan

Summary

- KMA has been dedicating to assimilate satellite data to fill gap at sparse area.
- The **quality** of ground-based GNSS station over the Korean Peninsular was evaluated and it looks **good** to assimilate for local and very-short range forecast model.
- Ground-based GNSS data gives positive impacts on the lower tropospheric humidity field and improved the skill score of precipitation forecast.

Future Plan

- To optimize use of the ground-based GNSS data, estimation of observation error and new bias correction have been investigated and initial trials show positive results.
- We plan to use the ground-based GNSS data in NEW convective scale model based on KIM(KIAPS Integrated Model system).

Thank you for your attention!

Korea Meteorological Administration
Numerical Modeling Center