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DIFFICULT TO PREDICT?

Answer: Low predictability

Two types of predictability:　Practical &  Intrinsic   (Lorenz 1996; F. 
Zhang et al. 2006)

Practical Predictability :  Depends on NWP systems
Intrinsic Predictability  : Upper bound of predictability even if perfect NWP 
systems were applied.
                               ← depends on phenomenon itselfZhang et al. (2006) showed intrinsic predictability on mesoscale 

prediction was originated in a cumulous parameterization.
 → It is clear that the upper bound of the predictability exists 
     as long as convective storms exist in predictions.

Chaotic system!

Next question:
What is indeed the source of chaos

 in convective storms?
Chaos = Strong nonlinearity

→ Investigate it using an ensemble 
system dealing with nonlinearity!



Trajectories of 100 particles predicted and filtered by Lorenz 
model and PF
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representation 
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cumulonimbus

Two groups at the initial stage of the Cb: 
• highly developed Cb or low developed Cu
• Earlier or later developed

Time
Hypothesis:
It will be observed large 
spread of the particles in 
environmental fields before 
the CI.

CONCEPT OF THE STUDY
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The PDFs should be non-
Gaussian.

Need an ensemble system 
based on non-Gaussianity.



NON-GAUSSIAN PDF

• Miyoshi et al. (2014) successfully implemented 10240-
member LETKF with the SPEEDY model (T30/L7).

Auto-correlations for Q from      at 00 UTC 17 January. Specific humidity [g/kg] at a single grid 
point
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Bimodal PDF 
likely related to 
precipitation 
area



NHM-PF

• Sampling Importance Resampling (SIR) filter
• JMANHM (Saito et al. 2006; 2007; 2012)

The JMA mesoscale nonhydrostatic model
  - 2-moment cloud microphysics (3-ice)
  - MY 3.0 or Deadorff (1980)

• RF perturbation (later)
• Dynamical estimation of R (Ueno and Nakamura 

2016)
  see Poster 4.1:  Genta Ueno: Bayesian estimation of 
the observation-error covariance matrix in 
ensemble-based filters

• Advanced observational operators developed for 
NHM-4DVAR (Kawabata et al. 2007; 2011; 2014a; 
2014b; 2018)
- Conventional data, wind profiler
- Radial velocity and reflectivity by weather radars
- Doppler lidar, GNSS IWV, ZTD, SPD, Dual Pol., RASS



RF(RANDOM FIELD) PERTURBATION 
AS SYSTEM NOISE

PT 
(Z=15)

Water vapor 
(Z=10)

Cloud water (Z=10) Wind (Z=5)

• 12-h forecasts by JMANHM were performed
 for 20 days initialized both at 00 and 12 
UTC.

• Output 3 hourly
• A set of forecast were randomly chosen to 

make a difference field.
• Variables of RF are 3-dimensional wind, 

potential temperature, water vapor, cloud 
water, and cloud ice.

• Horizontal averages were set to ZERO at 
every vertical layer.

• Running mean with 5x5 grids to avoid 
spiky noise.

• RF are added as system noise with factor 
0.1 at each resampling step if some of 
particles are copied to a specific particle.

Magnusson et al. (2009)



DESIGN OF OSSE

• 100 particles from LETKF (50 members) and LAF (two different 
analysis time)

• 48x48x50 grids at 2 km grid spacing

• 2-h assimilation with observations at every 10 min

• 8 sets of parameter (model switch) ensemble: 
 2 lateral boundary schemes, 3 parameters in cloud 
microphysics

100
particl
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NATURE RUN & OBSERVATION 
NETWORK

Rainwater 
(3490m)

Vertical cross section 
(rain+snow+graupel+hail)

Observations (truth with Gaussian noise)
X (pseudo radar): mixing ratio of rainwater (6 points at 15, 
25, 35th layer)
O (surface obs): wind, potential temperature, mixing ratio 
of water vapor (4 points, surface level)

Initiate
!



RESULT: PARTICLES WITH WEIGHT 
ALONG WITH TIME STEP

Weigh
t

Fig. 2 of P. J. van Leeuwen (2009, MWR)

Degeneracy?

at 80 
min

NHM-PF

The 
end!



RESULT: RMSE AGAINST 
OBSERVATIONS

0

0.1

0.2

0.3

0.4

0.5

0.6
NoDA PF

x10-3x10-3



RESULT: RMSE AGAINST NATURE 
RUN 
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Degeneracy at 80 min affects the 
worse score.



RESULT: SPREAD AT 70 MIN

PF

NoDA

PT Water 
vapor

Rainwat
er

Spreads in PF are smaller than that 
in NoDA especially over the 
observation and rain area.



RESULT: ENSEMBLE MEAN 
(RAINWATER)

Nature 
run

PF NoDA

Intensity and horizontal scale of Cb core 
were significantly improved by NHM-PF.

Successfully 
performed!



P D F  ( Z = 2 0 )
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Water vapor Rainwater
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Water vapor Rainwater
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SUMMARY

• To investigate predictability on Cb and/or thunderstorms, we need 
nonlinear and non-Gaussian DA system.

• A particle filter with JMANHM （NHM-PF) was developed.

• Horizontal resolution of NHM-PF is 2-km and advanced obs. operators for 
NHM-4DVAR are  implemented.

• RF perturbation and parameter (model switch) ensemble were applied in 
OSSE.

• NHM-PF was successfully performed at least by 70 min:  RMSEs and 
spread reduced, and the thunderstorm in the model was enhanced.

• Multimodal PDFs were seen over the rain region as well as the inflow 
regions. 

• Next step: Enhance the number of particles up to ????



Thank you for your attention.
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