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Aim of talk:
Survey briefly convective scale data assimilation methods 
at operational centers.

Survey briefly ongoing research at operational centers

Identify where the approaches differ and try to understand 
whether these differences are due to practical reasons or to 
differences in understanding of scientific problems.

Show that convective scale data assimilation is worth the 
effort.



  

Group Model Numerics - (Physics) Resolution

Meteo-France
ALADIN, HIRLAM ALADIN

Spectral, SL, SI
(AROME or ALARO physics)

1.3 – 2.5 km
50-90 levels

COSMO COSMO Finite diff., C-grid, 3D Bott adv.
Time-splitting

2.2 - 2.8 km
50-60 levels

Met Office UKV
Finite diff., C-grid, SL, SI
Variable resolution

1.5 km
70 levels

NOAA
CONUS-NAM

HRRR

Finte diff., B-grid, F/B fast w.   

Finte diff. 5th order, C-grid, 
time splitting

3 km

3 km

JMA
MSM

LSM
Finte diff., Split-explicit

5 km

2 km

Operational NWP models participating 
in the survey:



  

Group Methods Incr. res. Other DA comp.

Meteo-France
HIRLAM
ALADIN

3D-Var; Berre(2000)
statistical balance;
EDA for BGE stat.

1.3 - 2.5 km 
Bayesian retrieval of 
hum. profiles from 
radar refl.

COSMO
KENDA (LETKF); Adaptive
multipl. and addit. Inflation;
RTPP; Adapt. localization

2.2 - 2.8 km
Hydrost. Bal.
Latent Heat Nudging

Met Office
Incr. 4D-Var; 
Stat. bal.;
Lagged NMC for BGES

4.5 km
Jc-DFI
Latent Heat Nudging

NOAA CONUS NAM

NOAA HRRR

Hybrid incr. 3DEnVar
NMC for BGEs
Hybrid incr. 3DEnVar
NMC for BGEs

9.0 km

12.0 km

Cloud analysis +
Latent Heat Nudging
       -”-
       -”-

JMA MMA

JMA LMA

Incr. 4D-Var;NMC for BGEs

3D-Var; NMC for BGEs

15.0 km

5.0 km

Jc-DFI
Bayesian retr…...
Soil control variab.!

Operational upper air data assimilation 
algorithms:



  

Group DA cycle Coupling to host model Other

Meteo-France
HIRLAM
ALADIN

1 h cont. cycling
3 h cont. cycling
3-6 h cont. cycling

ARPEGE 0 h lag
ECMWF 3-6 h lag
ARPEGE 0h lag or
ECMWF 6 h lag

Large scale mix
Blendvar

COSMO DWD

COSMO Suisse

1 h cont. cycling

1 h cont. cycling

ICON ensemble (20 km) 
0 h lag  
ECMWF ensemble

Met Offiice 1 h cont. cycling MO global 3-8 h lag

NOAA CONUS NAM

NOAA HRRR

1 h cycling (restart 
from global t - 6 h)

1 h cycling (restart 
from 13 km parent 
model t-1h)

Parent domain (12 km)

Parent domain (13 km)

JMA MA

JMA LA

3 h cont. cycling 

1 h cycling (restart 
from MA t - 3h)

JMA GSM 3-6 h lag

MSM 3-5 h lag

Operational data assimilation cycling:



  

Development of advanced data 
assimilation schemes

4D-Var HARMONIE:
- Multi-incremental, spectral space control variable, pre-
conditioning by sqrt(B), (similar to ECMWF and HIRLAM)
- Large scale error constraint

Hybrid 4DEnVar:    
- Meteo-France: B pre-conditioning, control vector=model 
state, space-time localization (advection)
- HARMONIE: sqrt(B) pre-conditioning, α control vector, 
builds on HARMONIE 4D-Var 
- JMA: Hybrid 4D-Var
- Met Office: Hybrid 4D-Var (similar to global) 

Rapid update NOAA based on EnKF



  

Impact of HARMONIE 4D-Var

(Provided by Jan Barkmeijer et al.)

3 h acc. Precipitattion
 
Fraction Scill Score 
0.3 mm at 12h 
------- no data assimilation
------- 3D-Var
------- 4D-Var

Daily cycle of Cloud cover

–----------- no data assimiation
------------- 3D-Var
------------- 4D-Var
------------- observations



  

Impact of HARMONIE 4D-Var

2 meter temperature
Bias and standard deviation

----------- no data assimilation
----------- 3D-Var
----------- 4D-Var

(Provided by Jan Barkmeijer et al.)



  

Impact of Meteo-France 3DEnVar

(Thibaut Montmerle, personal communication))



  

HARMONIE Hybrid EnVAR finally works !

Implementation as in 

Ensemble : 10 members of BRAND perturbations
Localisation : spectrum of unbalanced surface pressure

(Provided by Jelena Bojarova)



  

Jo (distance to obs) 
Jb (background static )
Ja (background flow-dep)

Gradient ∂J/∂χ

J(χ) = 2Jb + 2Ja + Jo min J(χ) => ∂J/∂χ = 0
χ

YQ%LGP=.TRUE.  
YQ%LSP=.FALSE.

Hybrid EnVar converges finally !!!!!

Example 20120613_21 DKCOEXP

892

202.12

220.06

+ 91.89

+ 29.36 0.19

341.31 =

=> YQ%LGP=.FALSE.  
YQ%LSP=.TRUE. + Qtrans

(Provided by
Jelena Bojarova)



  

Details in upper-air data assimilation – 
similarities and differences

(1) DA cycling and handling of larger scales: 

- Groups with access to 0 h lag LBCs seem to be able to 
handle larger scales without any further action 
- Groups using “old” LBCs need special efforts for larger 
scales (LSMIX, Jk, BlendVar).
- NOAA and JMA LA apply DA restarts (spinup problems?)

(2) Background Error Statistics in 3D-Var and 4D-Var:

- Some groups express satisfaction while other groups 
are more critical (Poster by Bojarova and Gustafsson). 
- Ensemble techniques to generate BGEs differ
- BGEs on model levels in steep orography ?
- Vertical transforms to do inversions better (Met Office)
- Moisture balances (ALADIN)
- Moisture control variable (ECMWF and Met Office)
      



  

Structure functions derived from different ensembles 
EDA with perturbed observations 
BRAND: additative inflation of control BG
     Surface pressure variance explained by
     - vorticity (solid line) 
     - unbalanced divergence (dashed line)

              EDA perturbations                              EDA perturbations
               (6 hour DA cycle)                                (3 hour DA cycle)

(Provided by 
Martin Ridal and
Jelena Bojarova)



  

Effect of further spinup



  

(3) 4D-Var

JMA: NL model resolution 5 km; innovations at 5 km; 
increment resolution 15 km; NL (!) forward model every 
iteration. Motivation: Non-linearities,  

Met Office: NL model resolution 1.5 km; innovations at 
1.5 km; increment resolution 4.5 km; linear perturbation 
model + adjoint during minimization 

HARMONIE: NL model resolution 2.5 km; multi-
incremental minimization; outer loop with innovation 
calculation at full model resolution; inner loop quadratic 
minimization with TL and AD models (including some 
NL model re-calculations at low resolution); 5 km inner 
loop resolution so far  

Details in upper-air data assimilation – 
similarities and differences (cont.) 



  

Kinetic energy spectra of assimilation increment for 
different iteration numbers; HIRLAM 4D-Var 24 km model

1 outer loop iteration
100 iterations at 48 km

2 outer loop iterations
60 iterations at 96 km
40 iterations at 48 km

(Gustafsson et al., 2012)



  

Forecast verification scores (BIAS and RMSE) for different 
outer loop configurations

June 2005
Mean Sea Level Pressure

Full line:       100 iterations at 66 km
Dashed line: 100 iterations at 44 km
Dotted line:     50 iterations at 66 km +
                         50 iterations at 44 km 

Gustafsson et al. (2012)



  

“Inverse adjustment” by 4D-Var
Equatorial domain shallow water model; moisture and condensation added.

4D-Var data assimilation experiment 
with a temperature observation at +12h

Forward non-linear model sensitivity experiment from
a temperature perturbation at +0h

+3 h

+6 h +12 h+0 h

+6 h +12 h

For more details see poster by Ziga Zaplotnik!



  

(4) EnKF and EnVar

- Ensemble resolution: Full model resolution ensemble 
(COSMO) – Global ensemble (NOAA)

- Ensemble generation technique
- Localization (Observation space, model space, time/space) 
and inflation (multiplicative, additative, RTPP)

Details in upper-air data assimilation – 
similarities and differences (cont.)



  

(5) Radar data assimilation and adjustment

- Meteo France, HARMONIE and JMA 1DVar solution:
   - Retrieve humidity profiles from radar reflectivity
   - Assimilate these humidities and radar winds 
     together with all other observations
                   (“nature balance” in case of dense data)
   - Statistical balance constraints 

- Latent Heat nudging
   - Convert radar reflectivities to latent heating rates
   - Use these latent heating rates during model integration
   - Let the model do the adjustment   

Details in upper-air data assimilation – 
similarities and differences (cont.)



  

Impact of Latent Heat nudging
Fractions Skill Score (FSS) verification of radar reflectivity 
NOAA CONUS NEST,  5-10 May 2015

–--------  operational with latent heat nudging during DFI
---------   experiment without latent heat nudging during DFI



  

(5) Balances - Need for initialization?

- AROME does not use initialization and this is defended by 
Meteo France (“nature balance” with dense observations)
- COSMO uses hydrostatic balancing
- UKV uses JcDFI
- NOAA uses digital filter (with latent heat nudging)
- JMA uses JcDFI for 4D-Var

Problems
- HARMONIE-Arome: significant short range noise
- How to separate signal and GW noise with short windows?
- NLNMI approach?
- Diagnostic balance relations (Pagé et al., 2007)?

Details in upper-air data assimilation – 
similarities and differences (cont.)



  

Impact Studies – Is convective-scale 
data assimilation worth the effort?

Data assimilation versus downscaling?

Impact of advanced methods versus simpler 
methods?

Impact of observations on convective scales?



  

Data assimilation versus 
downscaling for a small model 
domain over Iran (HARMONIE-
AROME)
----------- ERA Initial and Lateral Boundary Conditions 
              (LBCs), No DA
----------- ERA LBCs, DA
----------- ECMWF operational forecast LBCs, DA 



  

COSMO KENDA, 1 h 
precipitation, Fractions Skill 
Score (FSS), 30 km x 30 km, 26 
May – 9 June 2016

KENDA initial data - full line
Interpolated initial data – dashed line 

0.1 mm/h

1.0 mm/h



  

AROME-France, 6 h precipitation, Brier Scill Score, 50 km 
neighborhood, 1 May – 1 Nov 2016

AROME initial data, blue full line
ARPEGE initial data, red dashed line 



  

Case study, strong precipitation event over the Riviera
3 October 2015  15–21 UTC
(a) Radar + rain-gauge; (b) ARPEGE initial data 00UTC
(c) AROME initial data 00UTC; ARMOME initial data 03UTC



  

Improved utilization of observations

- Radar networks (OPERA)

- Dual polarimetric radars

- Mode-S

- Satellite image data

- Need for improved modelling of spatially 
correlated observation errors



  

The EUMETNET OPERA radar data network



  

Impact from an international set of radar 
reflectivity data from the OPERA network

November 2016, relative humidity profiles

(From  Ridal and Dahlbom)



  

Example of distribution of Mode-S aircraft 
observations in the vicinity of the Shiphol Airport



  

Example: Impact of Mode-S observations on 10 meter 
wind HARMONIE forecasts over the Cabauw tower in 
De Bilt
……………… Observation
……………… HARMONIE with conv. observations
……………… HARMONIE with conv. + Mode-S observations



  

Many types of satellite observations still to be assimilated!!
Example: 
(a) SEVIRI observations on the COSMO-DE grid
(b) Synthetic image from COSMO output (with additional cloud top corrections) 
(c) Synthetic image from COSMO output (without additional cloud top corrections)
(d) Reflectance histograms (a) grey, (b) green and (c) red  
  



  

Convective-scale data assimilation -
code development and maintenance

-  DA developments for convective scales has followed global 
DA  with a time lag of several years
-  Not satisfactory; flow dependency for example is strongly 
needed at convective scales
-  One reason is the sharing of huge investments into DA 
software with higher priority for the global version. 
-  This wish to share development resources may have 
delayed the development of more dedicated convective-scale 
methods.



  

Concluding remarks concerning 
convective scale data assimilation

- Different approaches are applied 
operationally at present
- Move towards EnKF and EnVar methods
- Impact studies show that convective scale DA 
is worth the effort

Core convective scale assimilation problems 
not discussed in this talk:

- Multi-scale assimilation methods
- Space-time covariance localization
- Improved observation error statistical models

Thank you!
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