QUANTITATIVE ESTIMATION OF VOLCANIC ASH EMISSIONS AND ITS UNCERTAINTY BY A COMBINED MINIMIZATION – PARTICLE SMOOTHER

PHILIPP FRANKE, ANNE CAROLINE LANGE, AND HENDRIK ELBERN FORSCHUNGSZENTRUM JÜLICH INSTITUTE FOR ENERGY AND CLIMATE – 8

08. MARCH 2018

CONTENTS

- Introduction
- Ensemble for Stochastic Integration of Atmospheric Simulations
 - Ensemble of emission packages
 - Nelder-Mead minimization
 - Particle filter
- Results
 - Sensitivity analysis
 - Real test case
- Conclusions & outlook

INTRODUCTION

Motivation

Influence of volcanic ash

- May cause severe impacts on humans, environment, economy, and aviation
- Eyjafjallajökull eruption (Iceland) in 2010:
 - 100,000 air planes stayed on ground with more than 7 million passengers stranded
 - 1.3 billion Euros direct damage

Need for uncertainty assessment

- Doubts that closure of European air space was necessary in 2010
- Observation network is weak
 - Lidar measurements resolve vertical ash distribution but are sparse in space
 - SEVIRI measurements have prinically good spatial coverage but deliver only column integrated ash mass loadings
 - Observations come with large uncertainties (~ 40 % for SEVIRI)
- Decision making must be based on best knowledge
 - \rightarrow includes errors to reduce costs and risks

INTRODUCTION

Our approach: Stochastic Integration by a large ensemble

Uncertainty estimation of volcanic ash emissions by

- Use of column mass loadings observations as obtained from SEVIRI satellite
- Ensemble of distinct emission packages
- Ensemble-based Nelder-Mead minimization algorithm
- Particle smoother to optimize ensemble variance
- Ensemble is computationally demanding
 → IBM BlueGene/Q super computer by
 Jülich Supercomputing Center (JSC)

Ensemble for Stochastic Integration of Of Atmospheric Simulations (ESIAS)

INTRODUCTION

Our approach: Stochastic Integration by a large ensemble

Uncertainty estimation of volcanic ash emissions by

- Use of column mass loadings observations as obtained from SEVIRI satellite
- Ensemble of distinct emission packages
- Ensemble-based Nelder-Mead minimization algorithm
- Particle smoother to optimize ensemble variance
- Ensemble is computationally demanding
 → IBM BlueGene/Q super computer by
 Jülich Supercomputing Center (JSC)

Ensemble for Stochastic Integration of Of Atmospheric Simulations (ESIAS)

ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets distinct emissions

- Emission packages are defined for a specific time and height instance
- Each emission package contains a unit mass
- Increasing the data assimilation length increases ensemble size or reduces resolution of emissions

Indel Layer

Time since simulation start

Slide 05/15

ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets distinct emissions

- Emission packages are defined for a specific time and height instance
- Each emission package contains a unit mass
- Increasing the data assimilation length increases ensemble size or reduces resolution of emissions

Time since simulation start

Slide 05/15

ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets distinct emissions

- Emission packages are defined for a specific time and height instance
- Each emission package contains a unit mass
- Increasing the data assimilation length increases ensemble size or reduces resolution of emissions

Time since simulation start

ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets distinct emissions

- Emission packages are defined for a specific time and height instance
- Each emission package contains a unit mass
- Increasing the data assimilation length increases ensemble size or reduces resolution of emissions

- 1					
layer	EM03	EM07	EM11	$\rm EM15$	
	EM02	EM06	EM10	$\mathrm{EM14}$	
Model	EM01	EM05	EM09	EM13	
I	EM00	EM04	EM08	EM12	

Time since simulation start

ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets distinct emissions

- Emission packages are defined for a specific time and height instance
- Each emission package contains a unit mass
- Increasing the data assimilation length increases ensemble size or reduces resolution of emissions

Time since simulation start

Slide 05/15

Nelder-Mead minimization algorithm

Objective

argmin J(a) =
$$\sum_{t=1}^{L} (H M_t [a_t e_0] - y_t)^T R^{-1} (H M_t [a_t e_0] - y_t)$$

- a is n-dimensional vector (n degrees of freedom)
- start minimization at random point a^0 (initial vertex)
- create simplex around initial vertex

Extension

- Attach regular grid to solution space
- Improve minimization if first guess is far away (likely for volcanic eruptions)
- Perform minimization from N initial vertices

- *a*: ensemble member factor
- *H*: observation operator
- M_t : source-receptor model from time t to assimilation time L
- e_0 : unit a priori emission strength

Particle Smoother

Particle filter basics

- Ensemble based data assimilation
- Set of N (iid) model runs (particles)
- <u>Prediction step</u>: sample from $p(x_{t-1})$

 $x_{t}^{i} = M(x_{t-1}^{i} + e_{t-1}^{i}) p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x)dx}$

• <u>Update step</u>: weight each particle according to Bayes' Theorem

$$p(x_t|y_{1:t}) \sum_{i=1}^{N} w_t^i x_t^i \qquad p(x_t) \frac{1}{N} \sum_{i=1}^{N} \delta(x_t - x_t^i)$$

• For large N: $p(x|y) \lim_{N \to \infty} p(x_{true}|y)$

Slide 07/15

Particle Smoother

Sequential Importance Resampling

- Sample from new PDF p(x|y)
- Duplicate particles with high probability according to their weights
- Remove low probability particles
- Perturb particle position to get Nparticle again

time

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Observations of column mass loadings

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Slide 08/15

Observations of

column mass loadings

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Observations of

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Particle Smoother

Workflow

Occurence of a volcanic eruption

- 1. Wait for first observations to come
- 2. Start a priori ensemble

(distinct emission pacakages)

- 3. Run Nelder-Mead minimization
- 4. Optimize analysis ensemble by weighting and resampling
- 5. Go to step 2 when new observations are available

Sensitivity analysis

Setup of experiments

- Identical twin experiments on two days with strong (15/04/2010) and weak winds (29/04/2010) at the Eyjafjallajökull volcano (45km hor. resolution)
- SEVIRI-like observations of column mass loadings every 6 hours (incl. "zero"values)
- Use perturbed observations $(v * 0.4)^2$

$$\sigma_{y} = max[\frac{(y_{i}*0.4)}{max[y_{i}*0.4]}, 0.1]$$

- Emission resolution: 1 hour; 1 model layer
- Analysis ensemble size: N = 60

Objective

Extract vertically resolved emissions (t-z dimension) from column mass loadings observations (x-y dimension)

Slide 09/15

Sensitivity analysis / Potential and limitations

Strong wind case (15/04/2010)

- Distinction of explosive eruptions
- Relative mean error of same size than relative ensemble standard deviation

Weak wind case (29/04/2010)

- No distinction of explosive eruptions
- Relative ensemble standard deviation is smaller than relative mean error

Sensitivity analysis / Potential and limitations

Strong wind case (15/04/2010)

- Distinction of explosive eruptions
- Relative mean error of same size than relative ensemble standard deviation

Weak wind case (29/04/2010)

- No distinction of explosive eruptions
- Relative ensemble standard deviation is smaller than relative mean error

Slide 12/15

Sensitivity analysis / Potential and limitations

Strong wind case (15/04/2010)

- Distinction of explosive eruptions
- Relative mean error of same size than relative ensemble standard deviation

Weak wind case (29/04/2010)

- No distinction of explosive eruptions •
- Relative ensemble standard deviation is smaller than relative mean error

rror in [%]

Slide 12/15

Application to Eyjafjallajökull eruption

Experimental setup

- Explosive initial phase of Eyjafjalla eruption at 14/04/2010-16/04/2010
- Emission optimization for the time 14/04/2010 06 UTC - 15/04/2010
 12 UTC with 3h emission resolution (1 model layer in the vertical)
- 15 km horizontal model resolution
- 23 model layers up to 100 hPa $\,$
- SEVIRI observations > 0.45 g/m² (72h assimilation window)

Results

- Model show smoother volcanic as h distribution \rightarrow higher emission resolution
- Meteorological model would increase diversity of analysis ensemble
- Meteorological clouds hinder better constraining of volcanic ash in the model

Slide 13/15

Application to Eyjafjallajökull eruption

Results

- Model show smoother volcanic as h distribution \rightarrow higher emission resolution
- Meteorological model would increase diversity of analysis ensemble
- Meteorological clouds hinder better constraining of volcanic ash in the model

Mitglied der Helmholtz-Gemeinschaft

14.03.18

Slide 13/15

Forschungszentrum

Observability application to Eyjafjallajökull eruption

Observability application to Eyjafjallajökull eruption

(Arason et al. 2011)

Observability application to Eyjafjallajökull eruption

(Arason et al. 2011)

Observability application to Eyjafjallajökull eruption

Kristiansen et al. 2011

CONCLUSION & OUTLOOK

Conclusions

- Development of a stochastic system (ESIAS) for volcanic ash emission estimation
- Sensitivity tests show dependence of analysis on wind conditions
 - Strong winds: reliable analysis
 - Weak winds: deficiencies in both, analysis and error representation
- Application to real volcanic eruption shows good estimation of emission profile
- High dependence on available observations

Outlook

- Integration of meteorological ensemble for further error representation
- Extension of stochastic model to more complex emission scenarios (forest fires, Saharan dust events)
- Increase computational efficiency

Slide 15/15

Sensitivity analysis / Potential and limitations

Volcanic ash cloud at 16/04/2010, 06 UTC (6h forecast after end of assimilation window)

Strong wind case (15/04/2010)

- Vertical cross section along satellite path
- Distingiushing of second elevated ash layer by ensemble mean
- Relative mean error of the order of relative ensemble standard deviation

Slide 47/48

Sensitivity analysis / Convergence of both ash clouds

Strong wind case (15/04/2010)

- Two high concentration areas of volcanic ash converge at approx. April, 16th, 00 UTC (24h after simulation start)
- After convergence no separation of the two regions possible
- No improvement of analysis by increasing the assimilation window length beyond 24 hours

Extinction coefficient $(\eta = \frac{M}{\alpha} \approx 1.45 g/m^2)$ of volcanic ash of nature run volcanic ash concentrations at four selected positions

14.03.18

Slide 48/48