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INTRODUCTION
Motivation

Influence of volcanic ash
● May cause severe impacts on humans, environment, economy, and aviation
● Eyjafjallajökull eruption (Iceland) in  2010:

● 100,000 air planes stayed on ground with more than 7 million passengers stranded
● 1.3 billion Euros direct damage

Need for uncertainty assessment
● Doubts that closure of European air space was necessary in 2010
● Observation network is weak

● Lidar measurements resolve vertical ash distribution but are sparse in space
● SEVIRI measurements have prinically good spatial coverage but deliver only

 column integrated ash mass loadings
● Observations come with large uncertainties (~ 40 % for SEVIRI)

● Decision making must be based on best knowledge 
→ includes errors to reduce costs and risks
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INTRODUCTION
Our approach: Stochastic Integration by a large ensemble

Uncertainty estimation of volcanic ash
emissions  by
● Use of column mass loadings obser-

vations as obtained from SEVIRI satellite
● Ensemble of distinct emission packages
● Ensemble-based Nelder-Mead minimi-

zation algorithm
● Particle smoother to optimize ensemble 

variance
● Ensemble is computationally demanding 

→ IBM BlueGene/Q super computer by 
Jülich Supercomputing Center (JSC)

Ensemble for Stochastic Integration of
Of Atmospheric Simulations (ESIAS)
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ESIAS-CHEM
ENSEMBLE OF EMISSION PACKAGES

Each ensemble member (EM) gets 
distinct emissions
● Emission packages are defined for a 

specific time and height instance
● Each emission package contains a 

unit mass
● Increasing the data assimilation length 

increases ensemble size or reduces 
resolution of emissions
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ESIAS-CHEM

14.03.18

Nelder-Mead minimization algorithm

Objective

argmin J (a)=∑
t=1

L

(H M t [at e0]− y t)
T R−1

(H M t [at e0]− y t)

● a is n-dimensional vector (n degrees of freedom)
● start minimization at random point a0 (initial vertex)
● create simplex around initial vertex

a:   ensemble member factor
H:  observation operator
Mt: source-receptor model 
     from time t to  
     assimilation time L
e0:  unit a priori emission  
     strength

f (x)=(1−x1)
2+100(x2−x1

2)2

Extension
● Attach regular grid to solution space
● Improve minimization if first guess is 

far away (likely for volcanic eruptions)
● Perform minimization from N initial 

vertices 
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ESIAS-CHEM
Particle Smoother

Particle filter basics

● Ensemble based data assimilation 
● Set of N (iid) model runs (particles)
● Prediction step: sample from p(xt-1)

● Update step: weight each particle 
according to Bayes‘ Theorem

● For large N: 

14.03.18

x t
i
=M (x t−1

i
+et−1

i
) p (x∣y )=

p( y∣x) p(x)

∫ p (y∣x) p (x)dx

p (x t∣y1 :t)∑
i=1

N

wt
i x t

i p(x t)
1
N ∑

i=1

N

δ(x t−x t
i
)

p (x∣y ) lim
N→∞

p (xtrue∣y )
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Schematic of particle filter 
methodology
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ESIAS-CHEM
Particle Smoother

Sequential Importance Resampling

● Sample from new PDF
● Duplicate particles with high probability

according to their weights
● Remove low probability particles
● Perturb particle position to get N

particle again 

14.03.18

p (x∣y)
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Schematic of particle filter 
methodology
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ESIAS-CHEM
Particle Smoother

Workflow

Occurence of a volcanic eruption
1. Wait for first observations to come
2. Start a priori ensemble 

(distinct emission pacakages)
3. Run Nelder-Mead minimization
4. Optimize analysis ensemble by weighting

and resampling
5. Go to step 2 when new observations are

available 
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Observations of 
column mass loadings
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RESULTS
Sensitivity analysis

Setup of experiments
● Identical twin experiments on two days

with strong (15/04/2010) and weak 
winds (29/04/2010) at the Eyjafjalla-
jökull volcano (45km hor. resolution)

● SEVIRI-like observations of column
mass loadings every 6 hours (incl. „zero“-
values)

● Use perturbed observations
 

● Emission resolution: 1 hour;
                           1 model layer

● Analysis ensemble size: N = 60 

14.03.18

Objective

„true“ emission profile

σ y=max [
( yi∗0.4)

2

max [ yi∗0.4 ]
,0.1]

Extract vertically resolved emissions 
(t-z dimension) from column mass loadings

observations (x-y dimension)
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RESULTS
Sensitivity analysis / strong winds test case

14.03.18
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ḿ

RMAE=100
1
N y

∑
j=1

N y

|
m̄ j−ḿ j
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∑
i

ḿi
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RESULTS
Sensitivity analysis / strong winds test case
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RESULTS
Sensitivity analysis / weak winds test case
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RESULTS

14.03.18

Weak wind case (29/04/2010)
● No distinction of explosive eruptions
● Relative ensemble standard deviation is 

smaller than relative mean error

Strong wind case (15/04/2010)
● Distinction of explosive eruptions
● Relative mean error of same size than 

relative ensemble standard deviation

Sensitivity analysis / Potential and limitations

Total emissions:
4.25 x 108 tons

Total emissions:
4.30 x 108 tons

Total emissions:
4.10 x 108 tons

Total emissions:
4.58 x 108 tons

Relative error of ens. meanRelative ens. std. deviationRelative error of ens. mean Relative ens. std. deviation

Nature runNature run Ensemble meanEnsemble mean
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RESULTS
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Experimental setup
● Explosive initial phase of Eyjafjalla

eruption at 14/04/2010–16/04/2010
● Emission optimization for the time

14/04/2010 06 UTC – 15/04/2010
12 UTC with 3h emission resolution
(1 model layer in the vertical)

● 15 km horizontal model resolution
● 23 model layers up to 100 hPa
● SEVIRI observations > 0.45 g/m2

(72h assimilation window)

Application to Eyjafjallajökull eruption

1 g/m2

Results
● Model show smoother volcanic ash distribution → higher emission resolution
● Meteorological model would increase diversity of analysis ensemble
● Meteorological clouds hinder better constraining of volcanic ash in the model
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Observability application to Eyjafjallajökull eruption

Emission profile of the best
fitted ensemble member
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Analysis by 
Kristiansen et al. 2011
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CONCLUSION & OUTLOOK
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Conclusions
● Development of a stochastic system

(ESIAS) for volcanic ash emission
estimation

● Sensitivity tests show dependence
of analysis on wind conditions
● Strong winds: reliable analysis
● Weak winds: deficiencies in both,

analysis and error representation
● Application to real volcanic erup-

tion shows good estimation of 
emission profile

● High dependence on available 
observations 

Outlook
● Integration of meteorological 

ensemble for further error represen-
tation

● Extension of stochastic model to 
more complex emission scenarios
(forest fires, Saharan dust events)

● Increase computational efficiency
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Strong wind case (15/04/2010)
● Vertical cross section along 

satellite path
● Distingiushing of second elevated 

ash layer by ensemble mean
● Relative mean error of the order 

of relative ensemble standard 
deviation

Sensitivity analysis / Potential and limitations
Volcanic ash cloud at 16/04/2010, 06 UTC 

(6h forecast after end of assimilation window)

Ensemble mean

Nature run

Relative error of ens. mean

Relative ens. standard deviation
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Strong wind case (15/04/2010)
● Two high concentration areas of

volcanic ash converge at approx.
April, 16th, 00 UTC (24h after 
simulation start)

● After convergence no separation 
of the two regions possible

● No improvement of analysis by 
increasing the assimilation window
length beyond 24 hours

Sensitivity analysis / Convergence of both ash clouds

Extinction coefficient (                      )  of volcanic ash 
of nature run volcanic ash concentrations at four 
selected positions 

η=
M
α ≈1.45g /m2
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