

Source identification from image-type

measurement data for atmospheric chemistry

models

A.V. Penenko, Z.S. Mukatova, A.A. Blem

Institute of Computational Mathematics and Mathematical Geophysics SB RAS Novosibirsk State University

6th International Symposium on Data Assimilation (2018) 5 - 9 March 2018, Munich, Germany

•Image type measurement data in air quality applications (large volume of data with unknown value w.r.t. the considered inverse modelling task):

- •Time-series (air quality sensors produce concentration time-series data up to 1 minute discretization).
- •Vertical concentration profiles (aircraft sensing, lidar profiles, etc).
- •Satellite images.

•Current technological context (HPC):

•The number of sequential iterations should be reduced.

•An iteration should be computationally intensive (in the sense of parallel computations).

•Existing algorithms

•Variational algorithms [V. Penenko et al. {1976,1981,...}], [Elbern et al. {1997, 2000, 2007,...},...] et al. (in Atm. Chem.)

•Representer methods for nonlinear models [Iglesias, Dawson, 2009]

Problem statement

Production-destruction type model for transformation processes

$$\frac{\partial \varphi_l}{\partial t}(t) + P_l(t,\varphi(t))\varphi_l(t) = \Pi_l(t,\varphi(t)) + r_l(t), \quad t \in [0,T], \quad l = 1,...,N_c,$$
$$\varphi_l(0) = \varphi_l^0, \quad l = 1,...,N_c,$$

Let $\varphi[\varphi^0, r]$ denote the solution of the direct problem

Measurement data

For $l \in L_{mes}$ $\varphi_l[\varphi^0, \mathbf{r}^{(*)}] = I_l + \delta I_l$

Time series with noise

Inverse problem

$$A: \begin{cases} \mathbb{R}^{N_c} \times F \to U_{mes} \\ \{\varphi^0, \mathbf{r}\} \mapsto \begin{cases} \varphi_l[\varphi^0, \mathbf{r}], l \in L_{mes} \\ 0, l \notin L_{mes} \end{cases} \end{cases}_{l=1}^{N_c}, \\ I = A(\varphi^0, \mathbf{r}^{(*)}) + \delta I, \end{cases}$$

$$U_{mes} = \left\{ \left\{ \begin{cases} h_l, l \in L_{mes} \\ 0, l \notin L_{mes} \end{cases} \right\}_{l=1}^{N_c} \mid h_l \in L_2(0,T) \right\},$$

 $\varphi^0 \in \mathbb{R}^{N_c}, I \in U_{mes}$ are known

 $\delta I \in U_{mes}$ is partially known (e.g. its norm or distribution)

Applications

Chemical kinetics

• Augmented [Stockwell,2002] (22 substances, 20 reactions)

 $hv + NO_2 \rightarrow NO + O_3P$ $hv + O_3 \rightarrow O^1D + O_2$ $HCHO + hv \rightarrow CO + 2HO_2$ $HCHO + hv \rightarrow CO + H_2$ $N_2 + O^1D \rightarrow N2 + O_3P$ $O_2 + O_3 P \rightarrow O_3$ $H_2O + O^1D \rightarrow 2OH$ $O^1D + O_2 \rightarrow O_2 + O_3P$ $HO_2 + NO \rightarrow NO_2 + OH$ $NO + O_3 \rightarrow NO_2 + O_2$ $NO + RO_2 \rightarrow HCHO + HO_2 + NO_2$ $CO + OH \rightarrow CO_2 + HO_2$ $HC + OH \rightarrow H_2O + RO_2$ $HCHO + OH \rightarrow CO + H_2O + HO_2$ $NO_2 + OH \rightarrow HNO_3$ $2HO_2 \rightarrow H_2O_2 + O_2$ $H_2O + 2HO_2 \rightarrow H_2O + H_2O_2 + O_2$ $HO_2 + RO_2 \rightarrow O_2 + ROOH$ $2RO_2 \rightarrow HCHO + HO_2$ $OH + SO_2 \rightarrow HO_2 + SULF.$

Chemical reaction rates depend on time: incoming solar radiation (photochemistry), temperature, pressure, moisture etc.

$$\begin{split} P_{NO}(t,\varphi) &= \left(k_9 [HO_2](t) + k_{10} [O_3](t) + k_{11} [RO](t) \right), \\ \Pi_{NO}(t,\varphi) &= k_1(t) [NO_2](t), \end{split}$$

• RADM2 Model [Stockwell et al, 1990]

Aerosol population dynamics

$$P(c;t,r) = \alpha_{D}(r) + \alpha_{S}(r) + \int_{0}^{r_{max}} K(r,r')c(r',t)dr'$$

$$\Pi(c;t,r) = \frac{1}{2}\int_{0}^{r} K(q(r,r'),r')c(q(r,r'),t)c(r',t)w(r,r')dr'$$

$$\int_{0}^{r_{max}} \frac{1}{2}\int_{0}^{r_{max}} K(r,r')c(r',t)w(r,r')dr'$$

•Climatology (Lorenz 63 model)

$$P(t,\varphi) = \begin{bmatrix} a \\ 1 \\ c \end{bmatrix}, \quad \Pi(t,\varphi) = \begin{bmatrix} a\varphi_2 \\ b\varphi_1 - \varphi_1\varphi_3 \\ \varphi_1\varphi_2 \end{bmatrix},$$

Adjoint problem

Lagrange type identity (sensitivity relation)

$$\langle h, \delta \varphi \rangle_{L_2^{N_c}(0,T)} = \delta \varphi^0 \cdot \Psi(0) + \langle \delta r, \Psi \rangle_{L_2^{N_c}(0,T)},$$
$$\mathbb{R}^{N_c} \times \mathbb{R}^{N_c} \to \mathbb{R}$$
$$(a,b) \mapsto a^T diag(\rho)b = \sum_{l=1}^{N_c} a_l b_l \rho_l, \langle ... \rangle_{L_2^{N_c}(0,T)} : \begin{cases} L_2^{N_c}(0,T) \times L_2^{N_c}(0,T) \to \mathbb{R} \\ \{h, \varphi\} \mapsto \int_0^T h(t) \cdot \varphi(t) dt \end{cases}$$

Adjoint problem

$$-\frac{\partial\Psi}{\partial t} + \left(diag\left(P(t,\varphi+\delta\varphi)\right) + \overline{\nabla}P(t,\varphi+\delta\varphi,\varphi)^* diag(\varphi) - \overline{\nabla}\Pi(t,\varphi+\delta\varphi,\varphi)^*\right)\Psi = h,$$

$$\Psi(T) = 0,$$

Let $\Psi[\phi^0, r, \delta \phi^0, \delta r, h]$ denote the solution of the adjoint problem where the divided difference operators

$$S(t, \varphi + \delta \varphi) - S(t, \varphi) = \overline{\nabla} S(t, \varphi + \delta \varphi, \varphi) \delta \varphi.$$

Gradient algorithms

Given the cost functional

$$J(r) = \sum_{l \in L_{mes}} \left\| \varphi_{l}[\varphi^{0}, r] - I_{l} \right\|_{L_{2}(0,T)}^{2} \rho_{l}.$$

if the parameters are smooth enough, then

$$\nabla J(r) = \Psi[\varphi^{0}, r, 0, 0, h], \qquad h = \left\{ \begin{cases} 2(\varphi_{l}[\varphi^{0}, r] - I_{l}), l \in L_{mes} \\ 0, l \notin L_{mes} \end{cases} \right\}_{l=1}^{N_{c}}$$

E.g. Polak-Ribiere conjugate gradient algorithm implemented in GSL

$$r^{(k+1)} := r^{(k)} - \alpha^{(k)} s^{(k)}, \quad \alpha^{(k)} = \operatorname*{arg\,min}_{\alpha>0} \overline{J} \left(r^{(k)} - \alpha s^{(k)} \right),$$
$$s^{(k)} = \begin{cases} g^{(k)} + \beta^{(k)} s^{(k-1)}, \quad k>1\\ g^{(k)}, \quad k=1 \end{cases}, \quad \beta^{(k)} = \frac{\left\langle g^{(k)}, g^{(k)} - g^{(k-1)} \right\rangle}{\left\langle g^{(k-1)}, g^{(k-1)} \right\rangle}, \quad g^{(k)} = -\nabla_r \overline{J} (\phi^0, r^{(k)})$$

Sensitivity operator

Given a system of (orthogonal) functions $U = \{u_{\xi}\}_{\xi \in \Xi} \subset L_2^{N_c}(0,T)$ Image to structure operator [Dimet et al,2015]

 $H_U(A(r_2) - A(r_1)) = \sum_{\xi \in \Xi} \left\langle A(r_2) - A(r_1), u_{\xi} \right\rangle_{L_2^{N_c}(0,T)} e_{\xi}, \quad \text{where} \quad A(r) \coloneqq A[\varphi^0, r]$

Sensitivity relation (Lagrange type identity)

$$\langle A(r_2) - A(r_1), u_{\xi} \rangle_{L_2^{N_c}(0,T)} = \langle M[r_2, r_1; u_{\xi}], r_2 - r_1 \rangle_{L_2^{N_c}(0,T)}$$

Sensitivity operator

$$M_{U}[r_{2},r_{1}]: \begin{cases} F \rightarrow \mathbb{R}^{\Xi} \\ z \mapsto \sum_{\xi \in \Xi} \left\langle M[r_{2},r_{1};u_{\xi}],z \right\rangle_{L_{2}^{N_{c}}(0,T)} e_{\xi}, \end{cases}$$
$$H_{U}\left(A(r_{2})-A(r_{1})\right) = M_{U}[k_{2},k_{1}]\left(r_{2}-r_{1}\right),$$

The inverse problem solution $r^{(*)}$ for any r and U satisfy

$$H_{U}(\mathbf{I}-A(r)) = M_{U}[r^{(*)},r](r^{(*)}-r),$$

$$H_U A(r^{(*)})' = M_U [r^{(*)}, r^{(*)}].$$

Theoretical foundations

- Transformation of the inverse problem with the perturbation theory. An adjoint problem is stated for the element of measurement data.
 - G. I. Marchuk, On the formulation of certain inverse problems, Dokl. Akad. Nauk SSSR, 156:3 (1964), 503–506 (In Russian).
 - Marchuk, G. I. Adjoint Equations and Analysis of Complex Systems Springer Netherlands, 1995
- Practical application to the linear inverse source problem by the sparse *in situ* measurements.
 - Issartel, J.-P. Rebuilding sources of linear tracers after atmospheric concentration measurements // Atmospheric Chemistry and Physics, Copernicus GmbH, 2003, 3, 2111-2125
- Dealing with linear and quasi linear ill-posed operator equations:
 - **r-pseudoinverse operators (inverse problem analysis with SVD):** Cheverda V.A., Kostin V.I. rpseudoinverse for compact operators in Hilbert space: existence and stability. J. Inverse and Ill-Posed Problems. 1995. V.3. № 2. P. 131–148. doi: 10.1515/jiip.1995.3.2.131.
 - Iterative algorithms based on the truncated SVD: Kaltenbacher B. Some Newton-type methods for the regularization of nonlinear ill-posed problems. Inverse Problems. 1997. V.13. № 3. P. 729–753. doi: 10.1088/0266-5611/13/3/012.
 - Iterative regularization in the case of inexact measurements: Vainikko, G. M., Veretennikov, A. Yu. Iterative procedures in ill-posed problems Moskow, Nauka, 1986 (In Russian).

Operator equations family

$$\begin{split} H_{U}A(r+\delta r,\varphi^{0}+\delta\varphi^{0})-H_{U}A(r,\varphi^{0})&=M_{U}^{0}[\varphi^{0},r,\delta\varphi^{0},\delta r]\delta\varphi^{0}+M_{U}[\varphi^{0},r,\delta\varphi^{0},\delta r]\delta r,\\ F\to\mathbb{R}^{\Xi}\\ M_{U}[\varphi^{0},r,\delta\varphi^{0},\delta r]&:\begin{cases}F\to\int_{0}^{T}\left\{\Psi_{l}\left[u_{\xi}\right](t)\right\}_{\xi=1,l=1}^{\Xi,N_{c}}diag(\rho)\,z(t)\,dt,\\ \mathbb{R}^{N_{c}}\to\mathbb{R}^{\Xi}\\ Z\mapsto\left\{\Psi_{l}\left[u_{\xi}\right](0)\right\}_{\xi=1,l=1}^{\Xi,N_{c}}diag(\rho)\,z,\\ \mathbb{Y}\left[u_{\xi}\right]&=\Psi\left[\varphi^{0},r,\delta\varphi^{0},\delta r,u_{\xi}\right] \end{split}$$

Family of operator equations depending on U, r

$$H_{U}\left(I - A(\varphi^{0}, r)\right) = M_{U}[\varphi^{0}, r, 0, 0]\left(r^{(*)} - r\right) + w,$$

$$w = \left(M_{U}[\varphi^{0}, r, 0, r^{(*)} - r] - M_{U}[\varphi^{0}, r, 0, 0]\right)\left(r^{(*)} - r\right) + H_{U}\delta I.$$

Direct problem solution

• With the locally adjoint-problems [Penenko, Tsvetova, 2013] $\varphi_{l}(t^{j+1}) = \varphi_{l}(t^{j})\varphi_{l}^{*}(t^{j}) + \int_{t_{j}}^{t_{j+1}} \prod_{l} (\xi, \varphi(\xi))\varphi_{l}^{*}(\xi)d\xi, \quad l = 1, ..., N_{c}, \\ -\frac{\partial \varphi_{l}^{*}}{\partial t} + P_{l}(t, \varphi)\varphi_{l}^{*} = 0, \quad t \in [t^{j}, t^{j+1}], \quad \varphi_{l}^{*}(t^{j+1}) = 1.$

•In the first order scheme the local adjoint-problem solution can be approximated with the solution for the constant coefficient

Positive solution

10

$$\phi_l^{j+1} = \phi_l^j e^{-P_l(t^j,\phi^j)\Delta t} + \int_0^{\Delta t} e^{-P_l(t^j,\phi^j)(\Delta t - \xi)} d\xi \Big(\prod_l (t^j,\phi^j) + r_l^j \Big).$$

•Species can be grouped with respect to the life time (destruction rate P) (QSSA method [Hesstvedt, Hov, Isaksen, 1978])

$$\phi_{l}^{j+1} = \phi_{l}^{j} L(P_{l}(t^{j}, \phi^{j})) + G(P_{l}(t^{j}, \phi^{j}))(\Pi_{l}(t^{j}, \phi^{j}) + r_{l}^{j}),$$

$$L(P) = \begin{cases} 0 \quad P\Delta t > \varepsilon_{\max} \\ e^{-P\Delta t} \quad P\Delta t \in [\varepsilon_{\min}, \varepsilon_{\max}] , \quad G(P) = \begin{cases} 1/P \quad P\Delta t > \varepsilon_{\max} \\ \frac{1-e^{-P\Delta t}}{P\Delta t} \quad \Delta t \quad P\Delta t \in [\varepsilon_{\min}, \varepsilon_{\max}] . \\ 1-P\Delta t \quad 0 < P\Delta t < \varepsilon_{\min} < 1 \end{cases}$$

Lagrange type identity:

$$\langle \delta \phi, h \rangle_{\overline{L_2^{N_c}(0,T)}} = \delta \phi^0 \cdot \psi^0 \delta t^0 + \sum_{j=1}^{N_t-1} \delta r^j \cdot R(t^j, \phi^j) \psi^j \delta t^j,$$

Adjoint problem:
$$\begin{aligned} \psi^{j-1} \frac{\delta t^{j-1}}{\delta t^{j}} = \left(w^{j}(t^{j}, \phi^{j}, r^{j}, \delta \phi^{j}, \delta r^{j}) \right)^{*} \psi^{j} + h^{j}, \quad j = 1, ..., N_{t}, \\ \psi^{N_{t}} = 0, \end{aligned}$$

Let $\psi[\phi^0, r, \delta\phi^0, \delta r, h]$ denote the solution of the adjoint problem $w^j(t^j, \phi^j, r^j, \delta\phi^j, \delta r^j) = \underset{l=1,...,N_c}{diag} L^j(p_l^2) + \left\{ S_l^j(t^j, \phi^j, r^j, \delta\phi^j, \delta r^j) \right\}_{l=1}^{N_c}, R^j(t^j, \phi^j) = \underset{l=1,...,N_c}{diag} G^j(p_l^1)$ $p_l^2 = P_l(t^j, \phi^j + \delta\phi^j), \quad p_l^1 = P_l(t^j, \phi^j).$

 $\left(\phi_{l}^{j}\frac{L^{j}(p_{l}^{2})-L^{j}(p_{l}^{1})}{p_{l}^{2}-p_{l}^{1}}+\frac{G^{j}\left(p_{l}^{2}\right)-G^{j}\left(p_{l}^{1}\right)}{p_{l}^{2}-p_{l}^{1}}(\Pi_{l}(t,\phi^{j}+\delta\phi^{j})+r_{l}^{j}+\delta r_{l}^{j})\right)\overline{\nabla}P_{l}\left(t,\phi^{j}+\delta\phi^{j},\phi^{j}\right).$

$$\begin{aligned} \mathbf{f} \quad p_l^2 &= p_l^1 \qquad S_l^j \left(t^j, \phi^j, r^j, \delta \phi^j, \delta r^j \right) &= G^j \left(p_l^1 \right) \overline{\nabla} \Pi_l \left(t, \phi^j + \delta \phi^j, \phi^j \right), \\ S_l^j \left(t^j, \phi^j, r^j, \delta \phi^j, \delta r^j \right) &= G^j \left(p_l^1 \right) \overline{\nabla} \Pi_l \left(t, \phi^j + \delta \phi^j, \phi^j \right) + \end{aligned}$$

Else

Consistent numerical schemes

For gradient-type methods:

•

$$\overline{I}(\phi^{0},r) = \sum_{l \in L_{mes}} \sum_{j=1}^{N_{t}} \left(\phi_{l}^{j}[\phi^{0},r] - \overline{I}_{l}^{j} \right)^{2} \delta t^{j} \rho_{l}, \qquad h_{l}^{j} = \begin{cases} 2\left(\phi_{l}^{j}[\phi^{0},r] - \overline{I}_{l}^{j}\right), l \in L_{mes} \\ 0, l \notin L_{mes} \end{cases}, \\ \left(\nabla_{r} \overline{J}(\phi^{0},r)\right)^{j} = diag(\rho)R(t^{j},\phi^{j})\psi^{j}[\phi^{0},r,0,0,h]\delta t^{j}, j = 1, \dots, N_{t} - 1. \end{cases}$$

For sensitivity operator computation:

$$\overline{H}_{\overline{U}}\left(\overline{A}(r+\delta r,\phi^{0}+\delta\phi^{0})-\overline{A}(r,\phi^{0})\right) = m_{\overline{U}}^{0}[\phi^{0},r,\delta\phi^{0},\delta r]\delta\phi^{0}+m_{\overline{U}}[\phi^{0},r,\delta\phi^{0},\delta r]\delta r, \\
\mathbb{R}^{N_{c}\times N_{t}-1}\to\mathbb{R}^{\Xi} \\
m_{\overline{U}}[\phi^{0},r,\delta\phi^{0},\delta r]: \begin{cases} \mathbb{R}^{N_{c}-1}\left\{R_{l}(t^{j},\phi^{j})\psi_{l}^{j}\left[\overline{u}_{\xi}\right]\right\}_{\xi=1,l=1}^{\Xi,N_{c}}diag(\rho) z^{j}\delta t^{j}, \end{cases}$$
Parallel WRT ξ

$$m_{\overline{U}}^{0}[\phi^{0},r,\delta\phi^{0},\delta r]: \begin{cases} \mathbb{R}^{N_{c}}\to\mathbb{R}^{\Xi} \\
z\mapsto\left\{\psi_{l}^{0}\left[\overline{u}_{\xi}\right]\delta t^{0}\right\}_{\xi=1,l=1}^{\Xi,N_{c}}diag(\rho) z, \end{cases}
\psi\left[\overline{u}_{\xi}\right] = \psi\left[\phi^{0},r,\delta\phi^{0},\delta r,\overline{u}_{\xi}\right]$$

The Choice of Basis

«*a priori*» approach – the basis for the class of problems

• Fourier cos-basis

$$U_{\Theta} = \left\{ e_{\eta\theta} \mid 1 \le \theta \le \Theta, \eta \in L_{mes} \right\}, \quad e_{\eta\theta}^{j} = \left\{ \begin{cases} \left\{ \sqrt{2} / \sqrt{T \rho_{\eta}} \cos\left(\frac{\pi \theta t^{j}}{T}\right), \theta > 0 \\ 1 / \sqrt{T \rho_{\eta}}, & \theta = 0 \\ 0, & l \ne \eta \end{cases} \right\}_{l=1}^{N_{c}}, \quad j = 1, \dots, N_{t}. \end{cases} \right\}$$

• Wavelets, curvlets, etc. [Dimet et al.,2015]

«a posteriori» approach – the basis for the considered problem

• Singular vectors of the operator $m_{\overline{U}}[r^{(0)}, 0]m_{\overline{U}}[r^{(0)}, 0]^T$.

Penenko, A. V.; Nikolaev, S. V.; Golushko, S. K.; Romashenko, A. V. & Kirilova, I. A. Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering // Math. Biol. Bioinf., 2016, 11, 426-444 (In Russian)

Inversion algorithm

$$\overline{H}_{\overline{U}}\left(\overline{I}-\overline{A}\left(\phi^{0},r\right)\right) = m_{\overline{U}}[r,0]\left(\overline{r}^{(*)}-r\right) + w, \qquad \left\{\begin{array}{l}m_{\overline{U}}[r,\delta r] \coloneqq m_{\overline{U}}[\phi^{0},r,\delta\phi^{0},\delta r],\\w = \left(m_{\overline{U}}[r,\overline{r}^{(*)}-r] - m_{\overline{U}}[r,0]\right)\left(\overline{r}^{(*)}-r\right) + \overline{H}_{\overline{U}}\delta\overline{I}. \qquad \left\{\begin{array}{l}m_{\overline{U}}[r,\delta r] \coloneqq m_{\overline{U}}[\phi^{0},r,\delta\phi^{0},\delta r],\\m_{\overline{U}}[r,\delta r] \coloneqq \mathbb{R}^{N_{c} \times N_{t}-1} \to \mathbb{R}^{\Xi}\end{array}\right.$$

$$CC^{T} z = \sum_{l=1}^{\Xi} \sigma_{l}^{2} U_{l} \langle z, U_{l} \rangle_{\mathbb{R}^{\Xi}}, \quad \text{SVD} \quad \left(\Xi \times \Xi\right) \quad \sigma_{l} \ge 0, \quad \left\langle U_{m}, U_{l} \right\rangle_{\mathbb{R}^{\Xi}} = \delta_{ml}$$
(Right)
$$\begin{bmatrix} CC^{T} \end{bmatrix}^{-p} = \sum_{l=1}^{\min\{p, rank(C)\}} \frac{U_{l}}{\sigma_{l}^{2}} \langle ., U_{l} \rangle_{\mathbb{R}^{\Xi}}, \quad \text{Parallel wrt } l \\ C^{T} \begin{bmatrix} CC^{T} \end{bmatrix}^{-p} \left(= \sum_{l=1}^{\min\{p, rank(C)\}} \frac{V_{l}}{\sigma_{l}} \langle ., U_{l} \rangle_{\mathbb{R}^{\Xi}} \right) = \sum_{l=1}^{\min\{p, rank(C)\}} \frac{C^{T} U_{l}}{\sigma_{l}} \langle ., U_{l} \rangle_{\mathbb{R}^{\Xi}},$$

Newton-Kantorovich type iteration with right r-pseudoinverse

$$\delta r = m_{\overline{U}}[r,0]^T \left[m_{\overline{U}}[r,0]m_{\overline{U}}[r,0]^T \right]^{-p} \overline{H}_{\overline{U}} \left(\overline{I} - \overline{A}(\phi^0,r) \right).$$

How to choose p?

The Iterative Algorithm

Initial setup: $U = U_{\Theta}, r^{(0)}$ Divide operator spectra on N_p intervals $\Delta p = \left[\frac{\Theta |L_{mes}|}{N_p}\right], \quad p = \Delta p,$

Outer iteration with respect to considered spectra intervals $p \coloneqq p + \Delta p$, Inner iterations up to the stabilization

$$\delta r^{(k)} = \Pr_{src} m_{\bar{U}} [r^{(k)}, 0]^T \Big[m_{\bar{U}} [r^{(k)}, 0] m_{\bar{U}} [r^{(k)}, 0]^T \Big]^{-p} \bar{H}_{\bar{U}} \Big(\bar{I} - \bar{A}(\phi^0, r^{(k)}) \Big),$$

$$r^{(k+1)} = r^{(k)} + \gamma^{(k)} \delta r^{(k)}.$$

Step parameter according to the discrepancy principle and monotone decrease of the discrepancy

Considered		$\left(\mathbb{R}^{N_c \times N_t} \to \mathbb{R}^{N_c \times N_t} \right)$
source	\Pr_{src}	$\int_{z \mapsto src} \left\{ \int_{z_l} z_l, l \in L_{src} \right\}^{N_c} \cdot$
regularization $\left[\begin{array}{c} l \neq l \\ l \neq l \\ l \neq l_{src} \end{array} \right]_{l=1}$		$\left\lfloor \begin{array}{c} \mathcal{L} \\ \mathcal{L} \\$

$$\left\|\bar{H}_{\bar{U}}\delta\bar{I}\right\|_{\mathbb{R}^{\Xi}} \leq \left\|\bar{H}_{\bar{U}}\left(\bar{I}-\bar{A}(\phi^{0},r^{(k)}+\gamma\delta r^{(k)})\right)\right\|_{\mathbb{R}^{\Xi}} < \left\|\bar{H}_{\bar{U}}\left(\bar{I}-\bar{A}(\phi^{0},r^{(k)})\right)\right\|_{\mathbb{R}^{\Xi}},$$

Numerical experiment setup

 $hv + NO_2 \rightarrow NO + O_3P$ $HCHO + hv \rightarrow CO + 2HO_2$ $O_2 + O_2 P \rightarrow O_3$ $O^1D + O_2 \rightarrow O_2 + O_3P$ $HO_2 + NO \rightarrow NO_2 + OH$ $NO + RO_2 \rightarrow HCHO + HO_2 + NO_2$ $HC + OH \rightarrow H_2O + RO_2$ $NO_2 + OH \rightarrow HNO_3$ $H_2O + 2HO_2 \rightarrow H_2O + H_2O_2 + O_2$ $2RO_2 \rightarrow HCHO + HO_2$

 $hv + O_3 \rightarrow O^1D + O_2$ $HCHO + hv \rightarrow CO + H_2$ $N_2 + O^1D \rightarrow N2 + O_3P$ $H_2O + O^1D \rightarrow 2OH$ $NO + O_3 \rightarrow NO_2 + O_2$ $CO + OH \rightarrow CO_2 + HO_2$ $HCHO + OH \rightarrow CO + H_2O + HO_2$ $2HO_2 \rightarrow H_2O_2 + O_2$ $HO_2 + RO_2 \rightarrow O_2 + ROOH$ $OH + SO_2 \rightarrow HO_2 + SULF.$

$$L_{mes} = \{CO_2, O_3\}$$
$$L_{src} = \{NO, NO_2\}$$
$$r^{(0)} = 0$$

$$T = 10 \times 3600$$
$$N_t = 3000$$
$$N_c = 22$$
$$N_p = 25$$

Photochemical reactions rates depend on time (of day)

Exact measurements

19

*

<u>10</u>t, h.

20 *t*_{CPU},sec

N_p=25

N_p=50

N_p=100

N_p=200

- 1. Penenko, A. Newton-Kantorovich method in inverse source problems for productiondestruction models with timeseries-type measurement data // submitted to Siberian J. Num. Math. (Numerical Analysis and Applications).
- Penenko, A. V. Consistent Numerical Schemes for Solving Nonlinear Inverse Source Problems with Gradient-Type Algorithms and Newton–Kantorovich Methods // Numerical Analysis and Applications, Pleiades Publishing Ltd, 2018, 11, P.73-88 doi: 10.1134/s1995423918010081.
- Penenko, A. V.; Nikolaev, S. V.; Golushko, S. K.; Romashenko, A. V. & Kirilova, I. A. Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering // Math. Biol. Bioinf., 2016, 11, 426-444 doi: 10.17537/2016.11.426 (In Russian)
- Penenko, A. On a solution of the inverse coefficient heatconduction problem with the gradient projection method // Siberian electronic mathematical reports, 2010, 23, 178-198. (in Russian)
- 5. V.V. Penenko and E.A. Tsvetova and A.V. Penenko Variational approach and Euler's integrating factors for environmental studies // Computers Mathematics with Applications (2014) v.67 №. 12 2240 2256 doi: 10.1016/j.camwa.2014.04.004

Summary

- The inverse source identification problem for a production destruction model has been considered.
- Ajoint problems can be used for both cost functional gradient and sensitivity operator construction
- The sensitivity operator allow to reformulate the problem as a family of quasilinear operator equations
- To solve the equations, the inversion algorithm has been proposed using
 Sequential increase of the considered spectrum
 Right r-pseudoinverse matrices
 - •Discrepancy principle and the iterative regularization

•The algorithm was tested in a scenario for an atmospheric chemistry model

Thank you for your attention!

The work has been supported by the RSF project 17-71-10184.

- 1. Penenko, V. V. and N. N. Obratsov, A variational initialization method for the felds of the meteorological elements," English translations Soviet Meteorology and Hydrology, 11, P. 1–11. 1976.
- 2. Penenko, V. V. Methods of numerical modeling of atmospheric processes. Leningrad, Gidrometizdat, 1981. (In Russian)
- Elbern, H.; Strunk, A.; Schmidt, H. & Talagrand, O. Emission rate and chemical state estimation by 4dimensional variational inversion // Atmospheric Chemistry and Physics Discussions, Copernicus GmbH, 2007, 7, 1725-1783
- 4. Iglesias, M. A. & Dawson, C. An iterative representer-based scheme for data inversion in reservoir modeling // Inverse Problems, IOP Publishing, 2009, 25, 1-34
- Stockwell, W. R. Comment on "Simulation of a reacting pollutant puff using an adaptive grid algorithm" by R.K. Srivastava et al. // Journal of Geophysical Research, Wiley-Blackwell, 2002, 107, 4643-4650
- Stockwell, W. R.; Middleton, P.; Chang, J. S. & Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling // Journal of Geophysical Research, Wiley-Blackwell, 1990, 95, 16343
- 7. Dimet, F.-X. L.; Souopgui, I.; Titaud, O.; Shutyaev, V. & Hussaini, M. Y. Toward the assimilation of images // Nonlinear Processes in Geophysics, Copernicus GmbH, 2015, 22, 15-32
- Penenko, V. V. & Tsvetova, E. A. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical Analysis and Applications, Pleiades Publishing Ltd, 2013 , 6 , 210-220
- 9. Hesstvedt, E.; Hov, O. & Isaksen, I. S. Quasi-steady-state approximations in air pollution modeling: Comparison of two numerical schemes for oxidant prediction // International Journal of Chemical Kinetics, Wiley-Blackwell, 1978, 10, 971-994
- Penenko, A. V.; Sorokovoy, A. A. & Sorokovaya, K. E. Numerical model of bioaerosol transformation in the atmosphere // Atmospheric and Oceanic Optics, Pleiades Publishing Ltd, 2016, 29, P.570-22 574