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Atmospheric composition : A strongly constrained system 
 

• Coupling with the meteorology is in each 3D grid volume 

        (winds, temperature, humidity, clouds/radiation) 
 

• Chemical solution is also controlled by chemical sources and sinks 

Boundary layer O3  

Forecast verification after O3 assimilation 

no O3 assimilation  

with O3 assimilation  
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Atmospheric composition  

as a slaved /controlled system  

• As coupled system have to consider the Information content: 

– Chemical model 

– Chemical observations 

– Meteorology 

• Favors online chemistry-meteorology models 

• No for Incremental formulation with a lower resolution chemistry  

• Because the control of meteorology on chemistry is so strong,  

       the feedback of chemistry on meteorology is small 

• Except for long-lived species, chemical forecast is not the most 

       useful product, but analyses are 

• Forecast improvement is better addressed with parameter 

      (e.g. sources) estimation  
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Notation and definitions 

Continuity equation;     dry air density 

Eulerian0)(;Lagrangian0
1





 VV 



 tDt

D



Mixing ratio ci  of constituent  i  is defined as  
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The consistency between the wind field V used for the continuity equation and  

   the wind field V used for the transport of the constituent i is called the mass consistency  

CTM (Chemical Transport Models) are offline (from meteorology) models that uses 

different V and often at different resolution: they were introduced to use met analyses 

Online chemical models have mass consistency and same resolution as the meteorology 
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GEM-BACH online with meteo model /  

BASCOE CTM offline model driven by 6-hourly meteorological analyses 

TOMS 

observation 

CTM-BIRA 

4DVar assim 

resolution 

3.75º x 5º 

CTM-BIRA  

simulation 

1.875º x 2.5º 

Online 

GEM-BIRA 

simulation

1.5º x 1.5º 

Total column ozone (DU) for September 30th, 2003:  Grey areas represent pixels where the ozone column is smaller than 100 DU. 

Validation with MIPAS OFL 
20030825-20030904, 60°N-90°N 

  

BASCOE CTM, ECMWF 
    (d2003G) 

BASCOE CTM, EC 3D-VAR 
       (v3s85) 

GEM-BACH, EC 3D-VAR 
                        (K3BCS304) 

GEM-BACH, EC 4D-VAR 
                       (K4BCS304) 
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Coupled Assimilation 

O3/meteorology 

 
Assimilation of limb sounding 

MIPAS observations of O3 

with AMSU-A  

 

MIPAS vertical resolution 1-3 km 

 

solid lines  

    no radiation feedback 

dashed lines 

    assim O3 used in radiative 

    scheme (k-correlated method) 

de Grandpré et al., 1997, MWR 
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Operational air quality analysis 

experimental since 2002, operational since Feb 2013  

ozone 
fine particles 

Analysis of  O3, NO2, SO2, PM2.5, PM10 each hour  

                                                              

History 

•  O3, PM2.5 – using CHRONOS  

       2002-2009 

• O3, PM2.5 – using GEM-MACH 

       2009-2015 

• O3, PM2.5 , NO2, SO2, PM10 

      since April 2015  

     (Robichaud et al. 2015,  

                 Air Qual Atmos Health) 

• Multi-year data set (2002-2012) 

      Robichaud and Ménard 2014, ACP) 



What does the medicine has to say about air pollution ? 
 
• Interact with many groups  (e.g. Health Canada, Environmental Cardiology ) 

• In terms of mass, we breathe-in   

  per day about 20 kg of air,  

  2 kg of liquid  

  and 1 kg of solid food 

 
12-25 breath per minutes each is about 1 liter 

≈ 20,000 liter of air/day  

 

• Pulmonology and cardiology  

  are strongly linked 
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Mean 15 mg/m3 

Sun et al., JAMA 2005 
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Canadian Census Health and Environmental Cohort 

(CanCHEC) and the Canadian Urban Environmental 

Health Research Consortium (CANUE) 

www.canue.ca  

Brook et al. BMC Public Health (2018) 18:114 

http://www.canue.ca/
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Evaluation of analysis  

by cross-validation  

(or leave-out observations) 

Ménard, R and M. Deshaies-Jacques Part I: Using verification metrics. Atmosphere 2018, 9(3), 86, 

doi:10.3390/atmos9030086 

Ménard, R and M. Deshaies-Jacques Part II: Diagnostic and optimization of analysis error covariance. 

Atmosphere 2018, 9(2), 70; doi:10.3390/atmos9020070 

 

 

https://doi.org/10.3390/atmos9030086
https://doi.org/10.3390/atmos9020070
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3 spatially random distributed set of observations 
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Passive /independent obs. 

Active obs. 
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Estimation of error covariances in observation space 

    (HBHT , R) 

Theorem on estimation of error covariances in observation space  
 

 Assuming that observation and background errors are uncorrelated, 

the necessary and sufficent conditions for error covariance estimates to be 

equal to the true observation and background error covariances are: 

yconsistenc covariance InnovationBOBO TT
RHBH
~~

]))([()1 E

A scalar version of this condition is  

    p
TTT Ntrtr   ][])
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2/min pNJ 

conditiongain Kalman TheKHHK
~

)2 

Ménard, 2016, QJRMS 
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conditiongain Kalman TheKHHK
~

)2 

Diagnostic of the Kalman gain condition  

• Daley 1992 (MWR) suggested that the time lag-innovation covariance 

        to be equal zero (assuming observation errors are serially uncorrelated) 
 

• Here we suggest to use cross-validation 

 

Simple interpretation with a scalar problem 
 

1) Innovation consistency  says that the sum of observation and background  

      error variances is the sum of the true error variances 
 

2)  Kalman gain condition says that the ratio of observation to background 

       error variance is the ratio of the true error variances 
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17 

Hilbert spaces of random variables  

Define an inner product of two (zero-mean) random variables X , Y as   

 YXY,X E

Can defined a metric as   

 2

2
XX E

Verification of analysis by cross-validation:  

A geometric view 

Uncorrelated  random variables X , Y would be orthogonal   0Y,X 
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Verification of analysis by cross-validation: 

 A geometric view 

TTBOBO HBHR  ]))([(E
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obs and background errors are uncorrelated 

active and independent obs. errors are uncorrelated 
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Verification of analysis by cross-validation:  

A geometric view 

T
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true measure of the analysis error covariance 



Page 20 – March-9-18 

Verification of analysis by cross-validation:  

A geometric view 
c 

by varying the observation weight while  

    we can find a true optimal analysis  

TTBOBO HBHR  ]))([(E
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Verification of analysis by cross-validation:  

A geometric view 

T
HL

TAOAO HAHR ˆ])ˆ)(ˆ[( E

Hollingsworth-Lönnberg 1989 
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Verification of analysis by cross-validation: A geometric view 

T
MDJ

TTBABA HAHHBH ˆ])ˆ)(ˆ[( E

Ménard-Deshaies-Jacques 2018 
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Verification of analysis by cross-validation:  

A geometric view 

T
D

TBAAO HAH ˆ])ˆ)(ˆ[( E

Desroziers et al.  2005 

Geometrical proof given in  

          Ménard and Deshaies-Jacques 2018 
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Verification of analysis by cross-validation:  

A geometric view 
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Diagnostic in passive observation space we get 

The yellow triangle we have  

])ˆ()ˆ[(

])ˆ()ˆ[(])()[(

T
cc

T
cc

T
cc

AOAO

BABABOBO





E

EE

 and using                                                                      we get the relation above  
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Experiment cL (km) 2)( BO   22 ˆ/ˆˆ
bo  

 

2ˆ
o  2ˆ

b  pN/2  

O3    iter 0 124 101.25 0.22 18.3 83 2.23 

O3    iter 1 45 101.25 0.25 20.2 81 1.36 

 1 

Experiment 
Passive 

)ˆ( T
cMDJcdiag HAH  

Passive 
2])ˆvar[( occAO   

O3    iter 0 26.03 32.72 

O3    iter 1 28.95 28.75 

 

Experiment 
Active 

)ˆ( T
MDJdiag HAH  

Active 

)ˆ( T
Ddiag HAH  

Active 

)ˆ( T
HLdiag HAH  

Active 

)ˆ( T
Pdiag HAH  

O3    iter 0 22.69 9.61 -6.03 5.77 

O3    iter 1 13.32 13.68 8.94 11.60 

 

Input error statistics  

Estimate of analysis error variance at passive observation sites 

Estimation of active analysis error variance 

            Application to O3 surface  analysis 
 

iter 0 (first guess error correlation)   

Iter 1 (Maximium Likelihood estimation of correlation  length)  
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Verification of analysis by cross-validation:  
 

when active observation and background errors are correlated 
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The HL  and MDJ diagnostic continue to be valid  

but not the D  diagnostic 

Verification of analysis by cross-validation:  
 

when active observation and background errors are correlated 
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Verification of analysis by cross-validation:  
 

when active observation and background errors are correlated 
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Lognormal 

Kapteyn’s analogue machine, replicate 

)1(1 iii XX  

where i  is simply specified by  

Huize de Wolf laboratory University of Groningen 
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Simple model: Random proportional tendencies 
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where  is random parameter.  Suppose we 

divide a time inverval [0,1] into K        intervals  
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and by central limit theorem 
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is lognormally-distributed. 
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Letting w = log c , the analysis equation is then of the form 

)( bHwwKww  fofa

  1
 oTfTf

BHBHHBK

where the     s are the error covariances defined in log space. 

b is an observational correction, and has different form whether we consider that: 

a)  the measurement in log space that is unbiased (in which case b = 0) 

b) the measurement in physical space is unbiased 

 

2/iii Bb 

Transformation of mean and covariance between log and physical quantities 
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31 

 Analysis step  

       Positive analysis (lognormal formulation) (Cohn 1997, Fletcher and Zupanski 2006 ) 

B
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Data assimilation with a relative error formulation 

If the state-dependent observation error is dependent on the forecast instead 

  of the truth, i.e. 

and that the state-dependent model error is dependent on the analysis 

instead of the truth 

Then the Bayesian update, and KF propagation using the proper conditional  

expectation can be derived and give the standard KF with  

Ménard et al., 2000. MWR 
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       4.4 Lognormal KF • KF relative error formulation 
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• KF lognormal formulation 
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Lognormal distributions:    

      Observation errors is not lognormally distributed   

35 

)1(exp 222  wc c 

model values at observation sites observations 

Observations at low concentrations can have negative values, because  

   there are detection limits, or because of the retrieval 

     

ctecc bctecc 
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Lognormal or something else ? 

Process of random dilution 

n  is the number density (number of molecules per unit volume), v is the volume, 

and q is total number of molecules 

vnq 

If all these molecules found themselves into a larger volume V, then the new 

number density is  
VNq 

thus 
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where  is a dilution factor 10  

And after k dilutions, 
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so nk ~ Log-Gamma distribution 
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Thanks 


