Nonlinear data assimilation using synchronisation in a particle filter

Flavia R. Pinheiro ¹ Peter Jan van Leeuwen 1,2 Gernot Geppert 1,2

 $^1 \mathrm{University}$ of Reading

²National Centre for Earth Observation (NCEO)

Synchronisation and Data Assimilation

• Synchronisation phenomenon

Figure 1: A drawing by Christiaan Huygens of his experiment in 1665.

Synchronisation and Data Assimilation

• Synchronisation phenomenon

Figure 1: A drawing by Christiaan Huygens of his experiment in 1665.

- Data assimilation aims to *synchronise* the model evolution with the true evolution of the system, finding the best estimate of the state evolution and its uncertainty.
- Coupling is unidirectional, from the truth to the model, and incomplete, as observations are typically sparse and contain errors.

Motivation

\longrightarrow High-dimension nonlinear DA

\longrightarrow Particle Filters

\longrightarrow Proposal density freedom

Synchronisation

Synchronisation

Synchronisation framework

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t)) + g \frac{\partial S(x(t))}{\partial x(t)}^{\dagger} (Y(t) - S(t))$$
(1)

where g is a coupling constant, which is a tuning parameter, and $f(\mathbf{x}(t))$ is the nonlinear model (Rey et al (2014)).

Synchronisation

Synchronisation framework

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t)) + g \frac{\partial S(x(t))}{\partial x(t)}^{\dagger} (Y(t) - S(t))$$
(1)

where g is a coupling constant, which is a tuning parameter, and $f(\mathbf{x}(t))$ is the nonlinear model (Rey et al (2014)).

• Time embeddings (D_E) :

(both vectors $\in \Re^{D_E * D_y}$)

Introduction	Motivation	Methodology	Experiments and results	Particle Filter and Synch	Conclusions
		0000	000	0000000	
Svnchronisati	on				

- **Issue**: Construction of the Jacobian matrix requires propagation of a $D_x \times D_x$ matrix. This is prohibitively expensive for high-dimensional systems.

- **Solution**: construct the Jacobian matrix through an ensemble approximation.

Ensemble synchronisation framework

- Generate an ensemble of i initial states;
- Form the initial ensemble perturbation matrix:

$$\mathbf{X}(0)_{i} = x(0)_{i} - \bar{x}(0) \tag{2}$$

a $D_x \times Nens$ matrix;

• Propagate forward in time each ensemble member for τ time steps and form the ensemble perturbation matrix:

$$\boldsymbol{X}(\tau)_i = \boldsymbol{x}(\tau)_i - \bar{\boldsymbol{x}}(\tau) \tag{3}$$

with the same dimension as X(0);

• Generate the augmented $(D_E * D_y)$ -dimensional vectors Sand Y (the states in S are the ensemble means); • After some maths, the pseudoinverse can be calculated as:

$$\frac{\partial S(x(t))}{\partial x(t)}^{\dagger} = \mathbf{X}(0) \begin{pmatrix} (H\mathbf{X}(0)) \\ (H\mathbf{X}(\tau)) \\ \vdots \\ (H\mathbf{X}((D_E - 1)\tau)) \end{pmatrix}^{\dagger}$$

We need the pseudoinverse of a $(D_E * D_y) \times Nens$ ensemble perturbation matrix (also via an SVD).

- Computational gain: $D_x/Nens$
- Localisation can be applied to this matrix

(Pinheiro et al. 2018)

Experimental: Setup

• Twin experiments using a chaotic Lorenz96 model with **1000** variables

$$\frac{dx_a}{dt} = (x_{a+1} - x_{a-2})x_{a-1} - x_a + F \tag{4}$$

- 25% of the system is observed (equally distributed on the Lorenz ring) at every 10 time steps
- To update the variables at **unobserved** time steps, we use a progressive strength factor multiplied to the coupling term that was previously computed
- Observation noise with standard deviation $\sigma_{obs} = 0.1$
- $\Delta t = 0.01$ and constant time interval $\tau = 10\Delta t$

Ensemble-based synchronisation

Figure 2: RMSE for $D_x = 1000$, Nens = 30, localisation radius = 10. $(D_E = 5)$

Ensemble-based synchronisation

Figure 3: Two **unobserved** variables, $D_x = 1000$ (predictions after red lines).

Introduction	Motivation	Methodology 0000	Experiments and results 000	Particle Filter and Synch ••••••	Conclusions
Formulation					
Main io	dea				

Combine the **EnSynch** with the **IEWPF** (Implicit Equal-Weights Particle Filter - Zhu et al. 2016)

The pdf at time n can be written as:

$$p(x^{n}) = \int p(x^{n}, x^{n-1}) dx^{n-1}$$

=
$$\int p(x^{n} \mid x^{n-1}) p(x^{n-1}) dx^{n-1}$$
 (5)

where $p(x^n | x^{n-1})$ is the transition density of the original model. We can introduce a proposal density **q** as follows:

$$p(x^{n}) = \int \frac{p(x^{n} \mid x^{n-1})}{q(x^{n} \mid x^{n-1}, y^{n})} q(x^{n} \mid x^{n-1}, y^{n}) p(x^{n-1}) dx^{n-1}$$

$$(6)$$

The transition density is related to the original model via:

$$p(x^{n} | x^{n-1}): \quad x_{i}^{n} = f(x_{i}^{n-1}) + \beta_{i}^{n}$$
 (7)

and the proposal density to our proposed model:

$$\boldsymbol{q(x^n \mid x^{n-1}, Y(t)): x_i^n = f(x_i^{n-1}) + g \frac{\partial S(x(t))}{\partial x(t)}^{\dagger} (Y(t) - S(t)) + \beta_i^n}$$
(8)

This change in model equation is compensated by an extra weight:

$$w_{i} = \frac{p(x_{i}^{n} \mid x_{i}^{n-1})}{q(x_{i}^{n} \mid x_{i}^{n-1}, Y(t))}$$
(9)

Ensynch + IEWPF - Lorenz96 model

Figure 4: Observed (left) and unobserved (right) grid points. Observations occur at every 10 time steps. (Lorenz96 model for $D_x = 1000, D_y = 250$ and Nens = 20).

Ensynch + IEWPF - Lorenz96 model

Figure 5: Observed (left) and unobserved (right) grid points. Observations occur at every 10 time steps. (Lorenz96 model for $D_x = 1000, D_y = 250$ and Nens = 20).

Ensynch + IEWPF - Lorenz96 model

Figure 6: Global RMSEs averaged over the estimation period for each ensemble member for the IEWPF with different relaxation terms: EnSynch (left) and simple nudging (right). The red line is the ensemble mean.

Ensynch + IEWPF - Barotropic Vorticity model

- two-dimensional, turbulent flow
- stochastic forcing $\mathrm{d}\beta$

$$\frac{\partial q}{\partial t} = u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} + d\beta$$
$$q = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Ensynch + IEWPF - Barotropic Vorticity model

Figure 7: Observation at every second grid point in x and y direction,

true state

 $D_x = 2^{10}, D_y = 2^8, Nens = 20$

IEWPF with obs every ten time steps and synch as proposal

Conclusions and Discussions

- An efficient **ensemble-based synchronisation** scheme is proposed, opening up synchronisation to high-dimensional systems.
- The time-embedding concept allows to increase the **observability** of the system, meaning that less observations are needed, while still synchronising with the truth.
- These preliminary results suggest that the combination between the **EnSynch** scheme and the **IEWPF** leads to an effective fully nonlinear data-assimilation method.

References

- Rey, D., M. Eldridge, M. Kostuk, H. Abarbanel, J. Schumann-Bischoff, and U. Parlitz, 2014a: Accurate state and parameter estimation in nonlinear systems with sparse observations. Physics Letters A, 378, 869–873, doi:10.1016/j.physleta.2014.01.027.
- Zhu, M., P. J. van Leeuwen, and J. Amezcua, 2016: Implicit equal-weights particle filter. Quart. J. Roy. Meteorol. Soc., 142, 1904–1919, doi:10.1002/qj.2784.
- Pinheiro, F. R., P. J. van Leeuwen, and U. Parlitz, 2018: An ensemble framework for time delay synchronization. Quart. J. Roy. Meteorol. Soc., doi.org/10.1002/qj.3204.

THANKS FOR YOUR ATTENTION!

To calculate
$$\frac{\partial S(x(t))}{\partial x(t)}$$
 we note that, approximately:
 $H \mathbf{X}(\tau) \approx H \mathbf{F}(x)_{0 \to \tau} \mathbf{X}(0)$ (10)

This allows us to compute the Jacobian $F(x)_{0\to\tau}$ as:

$$H\mathbf{F}(x)_{0\to\tau} = H\mathbf{X}(\tau)(\mathbf{X}(0))^{\dagger}$$
(11)

The full Jacobian matrix can be constructed as:

$$\frac{\partial S(x(t))}{\partial x(t)} = \begin{pmatrix} H \\ HF(x)_{0\to\tau} \\ \vdots \\ HF(x)_{0\to(D_E-1)\tau} \end{pmatrix} = \begin{pmatrix} HX(0)(X(0))^{\dagger} \\ HX(\tau)(X(0))^{\dagger} \\ \vdots \\ HX((D_E-1)\tau)(X(0))^{\dagger} \end{pmatrix}$$