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1. Motivation

 The number of observations available for NWP has been
steadily increasing:
— 0(10%) pre-satellite era (~1990s)
— 0(10°) with Microwave sounders (1990s-2010s)
— 0(10°) with hyperspectral sounders (AIRS and IASI) (2010s ~)

Most new data are remotely-sensed non-local observations.

- Challenge: to extract as much information as possible
from dense and non-local observations

* Important question: How much information can a DA system
extract from observations?

* - One way to quantify this: Degrees of Freedom for Signal
(DFS, or information content).
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2. What is DFS? (1/2)

* Defined as the trace of the “influence matrix” tr(S) = tr(HK) = 3.0y2/0y°,
* Two ways to interpret:
1. Analysis sensitivity to observations measured in obs space.

2. The amount of information that the analysis extracts from
observations.

Simple illustrative examples:

- Forecast-Forecast cycle: analysis is always the same as the background.
- y? = y? > Sisnull, DFS=tr(S) = 0 (0% information from obs.)

- Direct Insertion: background is completely replaced by the obs.
- y2 = y° - Sisidentity, DFS = tr(S) = #obs
- DFS per obs =1 (100% information comes from obs. )
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2. What is DFS? (2/2)

e First introduced to NWP by Fisher (2003) and Cardinali et al.
(2004)

* Popular diagnostics for Var, but not many application to
EnKFs.

* Liuetal.(2009) derived a simple method to compute DFS in
EnKF framework:

tr(S) = tr(HK) =tr(HAHTR)=(R* Y?)T(R%Y2)/(N._-1)
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3. Ensemble-based DFS diagnhostics at JIMA
DFS per obs

global LETKF at JIMA
(50 members)

DFS per obs (201307106-2013071500,Globe) O1=1.58,0.68
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Observation type

Reasonable amount of information
(10-15%) coming from

conventional (sparse) Comparable to
observations. DFS in 4D-Var

Little (<1%) information extracted
from satellite (dense)
observations, hyperspectral
sounders (AIRS/IASI; very dense) in

particular (~0.1%). An order of
magnitude

Why? smaller than
in 4D-Var
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4. Why DFS so small for EnKF?

* My Answer: not enough ensemble size.

* With simple algebraic argument, we can show,
for any EnKF /ocal analysis, that DFS = tr(HK) <
N,..-1where N, isthe ensemble size.

= DFS underestimated (smaller than optimal)
whenever #ens << #obs (locally)
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5. Proof of DFSe"< N, . —1 (1/2)

Assume you have true B. For true (canonical) KF, the following equality holds:

(HAHT) = (HBHT)1+R. accuracy of analysis is the sum of .
' accuracy of background and observation

Let ©=R” HB2 (called observability matrix in Electrical Engineering/control
theory literature) and apply R from left and right; we have

R7HAHT R” = R” ((HBHT) 14+RY) 1 R% = ((© O")"* +l)
By eigen-decomposing @ @"=UAU", A°=diag(A°,, A°,,..., A,0, ...,0)

Y

(where r=rank(© ©')) we have

R7%HAHTR” T =(( © O")! +1) 1 =UAUT

T e = = = = = = — — = | €igenvalues of

. . l | ' normalized analysis error i
a— a a a a=2\b b - .
with A*=diag(A®;, A%,..., A%,0, ...,0), | A3=A%/(A%+1) <1 |4 quariance in obs space |

- - .- .- - e e e e o= |

> DFS°Pt = tr(HK) = tr(HAHTR) = tr(R” HAHT R*) arealllessthand.
=5.A% <r=rank(R”?HBH'R”)

= min{rank(R), rank(H), rank(B)} = #obs (for most cases)
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5. Proof of DFSe"< N, . —1 (2/2)

Now, consider a local analysis in EnKF (for now, ignore localization).

In EnKF, Bis approximated by Be"s = XPXPT/(N,, . —1).
Since rank(R”"HB¢"H'R")
= min{rank(R), rank(H), rank(X®)}
=min{ #obs, #obs, N, -1}=N_ —1 (if N, <#obs)
it follows that
DFSens = tr(HK®")=tr(R”"HA®"*H"R ")
<rank(R”?HB®"™H'R™") =N, -1

@):
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* DFSis underestimated in EnKF if N, . <<KDFS°P

e So what?

o)
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6. Implications
What’s wrong if DFSe"s << DFS°pPt ?

If DFSe"s << DFS°FPt it means...
* Analysis increment is smaller than under optimality

— analysis increment (in obs space) is HKd=HAH'R'd

— so if DFS (=tr(HAH'R1)) is underestimated, so is analysis
increment

* (more important) Since DFS = tr(R”?HAH™ R”?) is a measure of
analysis spread in obs space, underestimated DFS implies
overconfidence in analysis (overconfident posterior).

- Regquires strong covariance inflation, but inflating too much is
no good since that would lead to inaccurate representation of
“the errors of the day” (i.e., destroy flow-dependence)
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Digression: Interpreting the counterintuitive results
from the recent literature

 “Using less obs is better”
— ECMWEF global LETKF (Hamrud et al. 2015, MWR)
— Convective-scale COSMO-LETKF (Schraff et al. 2016, QRJIMS)
— Radar DA at RIKEN, Japan (Poster 2.3 by Guo-Yuan Lien)
— Meta-analysis of the literature by Tsyrulnikov (2010; COSMO

Newsletter No. 10):
”Optimal localization scale occurs when local analysis domain is small enough so
that “ensemble size (is) commensurable with the number of observed degrees of

freedom within [the local patch]”

—> Justification with DFS argument:
Locally assimilating more obs than #ens results in overconfident

analysis spread (requiring unreasonably large inflation) and also
smaller-than-optimal analysis increment.
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7. Proposed Solution:
B-localization through modulated ensemble

* DFS underestimation is a quantitative manifestation of the well-known (but
vaguely defined) rank deficiency issue.

- Resolved by covariance localization.

e PO-EnKF or serial enSRF:

— Replacing Be"H" with p_o(B"*HT) increases effective rank of B®" in local analysis,
mitigating the DFS underestimation
* By contrast, R-localization employed in LEKTF does not resolve the issue
"+ local analysis is still solved in (N,,.— 1)-dim space spanned by the
perturbations, even with R-localization

e Can we somehow increase the rank within ensemble-transform framework?

We can, by B-localization through modulated ensemble approach
(C. Bishop, pers. comm. at EnKF workshop 2016)

@):
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7. Proposed Solution:
B-localization through modulated ensemble

e B-localization with modulated ensemble (Bishop and Hodyss, 2009; ECO-
RAP paper Part Il)
—  Po(Be") = po(XXT) /(Neps-1) = (ZZ7) /(N p4eNens-1)
— where
Z=[WioX; WioX;  WioXnes 5 WiimowoX] WinewoXp W oo X pens
with p = WW', W=[w; w, = wy,,.]

e (My) intuitive interpretation:

— Localized empirical covariance is identical to the empirical covariance of many
modulated ensembles, each “raw” member x; “localized” with many different
localization modes w;

- LETKF with model-space B-localization can be achieved by performing regular ETKF
(w/o localization) using the modulated N, X N,..-member perturbations.

@):
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8. Exposition with a simple covariance model

Experimental setup
Simplest possible scenario following Bishop and Hodyss (2009; ECO-RAP

paper Part 1):
e 1D periodic domain with #grid=360.

B and R perfectly known. All errors unbiased and Gaussian. R diagonal.
» Perfect generation of X® (i.e., Be"s=XPX"T/(K-1) converges to B with K> o)
* Equally-spaced obs assimilated, #obs=120.

* No cycling.

e All experiments repeated 1,000 times and averaged.

columns of B (every 30 grids)

» Specification of B:
e superposition of sinusoids
* Fourier transform of a Gauss
function |
e virtually zero correlation beyond
15-grid interval.
* Variance is 1 everywhere (B, =1)
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8. Exposition with a simple covariance:
Role of localization

We focus on eigen-spectrum of R”?HA°PtH'R
because DFS is proportional to the area below this curve.

__________________________________________

10Eigenvalue distribution, (#grid,#obs,#ens)=(360,120,40) DFS= tr(R-Vz HAHT R-yz) — Zi Aai
------------------------------------------
 HA°P'H' computed as
é ((HBtrUEHT)-l_l_R—]_)—]_

60
# mode

E~--1"
~, -y
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8. Exposition with a simple covariance:
Role of localization

40-member ETKF without localization

10Eigenvalue distribution, (#grid,#obs,#ens)=(360,120,40) L4 HAenS'HT Computed as
Erks wo octizt ((HBensHT)—1+R—1)—1
« with raw Be"s=X"X°T/(N,, .-1)
(without localization)

elgenvalues ot HAHt

e K=40 member ensemble.

* Abrupt truncation at N, —
a0 60 80 100 120 1=39th mOde-

# mode

M ens=40

B
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8. Exposition with a simple covariance:
Role of localization

40-member Model-space B-localization using modulated ensemble
retaining 20 localization modes (localization scale tuned to give best analysis RMSE)

_ Eigenvalue distribution, (#grid,#obs,#er;jn)r:l(i60,120,40) ° Almost perfectly recovers
= the true (optimal) eigen-
spectrum.

0.8

e - B-localization very
effective when
assimilating dense obs.

elgenvalues ot HAHt

0.2 A

T L) T
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# mode

M ens=40
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8. Exposition with a simple covariance:
Role of localization

40-member LETKF with R-localization

(localization scale tuned to give best analysis RMSE)

_ Eigenvalue distribution, (#grid, #obs, #ens)=(360,120,40) @ HAR-locHT Computed fOI’ each
=S gridas

o Yo{(k-1)l+pgoR1}1Y"T,

then synthesized.

0.8

elgenvalues of HAHt

0.2 A

0.0

T L) T
0 20 40 60 80 100 120
# mode

T #ens=40
Zero eigenvalues beyond N_ .—1=39"" mode.
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9. Non-local obs and localization

* Another disadvantage of R-localization:
Not clear how to localize impact of obs whose position
in physical space is not clearly defined, .e.g.,

— Satellite radiances
— Ground-based GNSS obs (e.g., Poster 1.1 by Michael Bender)
— Surface pressure (!)

* A problem common with obs-space localization on BH'

— Solution already proposed:
model-space B localization (Poster 4.5 by Craig Bishop)
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9. Non-local obs and localization
1D toy system mimicking GNSS PWV

* Bg covariance: Gaussian-shape

* Obs operator: exponentially decays with height
* Single-obs assimilation with true (canonical) KF: x2—xP=Kd « BH=Z, h, b,

Bg covariance 80

80 r

20

02 04 06 08 1.0

®)nan
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9. Non-local obs and localization
1D toy system mimicking GNSS PWV

* Analysis increment from 20-member LETKF with R-localization

e assuming that the obs is “located” at the surface (k=1)

* Localizations with Gaspari-Cohn, localization scale L ranging from 5 to 40
* Small L 2 increment too much localized near the surface

e Large L = spurious increments inevitable in the upper atmosphere
Anl. inc. R-loc LETKF

Bg covariance 80 r 80

80 r

s true KF
— L=5
—— L=10
— L=15
—— L=20
—— L=30
—— L=40

60 60

20

02 04 06 08 10 02 04 06 08 0.00102030405
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9. Non-local obs and localization
1D toy system mimicking GNSS PWV

* Analysis increment from 20-member LETKF with B-localization retaining 10 modes
* Localizations with Gaspari-Cohn, localization scale L ranging from 5 to 40

* Moderate L (15~30) = increment very close to true KF,
with no spurious increment in the upper layers

e Quite insensitive to the exact choice of L = L can be tuned rather easily

Anl. inc. R-loc LETKF Anl. inc. B-loc LETKF

Bg covariance 80 r 80 80
s true KF
—— L=5
—— L=10
—— L=15 60
—— L=20
—— L=30
—— L=40

80 r

60 60
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20 20

02 04 06 08 10 02 04 06 08 0.00102030405
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Summary:

* LETKF with R-loc is efficient and works well for relatively
sparse and local obs.

* May not be optimal otherwise.

* Model-space B-localization with modulated ensemble
solves the problems with dense and non-local obs.

My plan over the next few years:

* |nvestigate whether B-loc really improves real NWP
— Target obs: ground-based GNSS (ZTD or PWV)
— Target model: convective-scale LAM (JMA-NHM)
— DA method: B-loc in the vertical, R-loc in the horizontal
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