

#### Toward improved LETKF assimilation of non-local and dense observation by direct covariance localization in model space

#### **Daisuke Hotta**

Meteorological Research Institute, Japan Meteorological Agency (MRI-JMA)

6<sup>th</sup> International Symposium on Data Assimilation 9 March 2018 Munich, Germany

Many thanks: Yoichiro Ota (JMA), Takemasa Miyoshi, Shunji Kotsuki, Guo-Yuan Lien (RIKEN/AICS), Kosuke Ito (Univ. Ryukyus), Eugenia Kalnay (UMD), Craig Bishop (NRL)



数值予報課

## 1. Motivation

- The number of observations available for NWP has been steadily increasing:
  - O(10<sup>4</sup>) pre-satellite era (~1990s)
  - O(10<sup>5</sup>) with Microwave sounders (1990s-2010s)
  - O(10<sup>6</sup>) with hyperspectral sounders (AIRS and IASI) (2010s  $\sim$ )

Most new data are remotely-sensed **non-local** observations.

- → Challenge: to extract as much *information* as possible from dense and non-local observations
- Important question: How much information can a DA system extract from observations?
- → One way to quantify this: Degrees of Freedom for Signal (DFS, or information content).

## 2. What is DFS? (1/2)

- Defined as the trace of the "influence matrix"  $tr(S) = tr(HK) = \sum_i \partial y^a_i / \partial y^o_i$
- Two ways to interpret:
  - 1. Analysis sensitivity to observations measured in obs space.
  - 2. The amount of information that the analysis extracts from observations.

Simple illustrative examples:

- Forecast-Forecast cycle: analysis is always the same as the background.
  - $y^a \equiv y^b \rightarrow S$  is null, DFS= tr(S) = 0 (0% information from obs.)
- **Direct Insertion:** background is completely replaced by the obs.
  - $y^a \equiv y^o \rightarrow S$  is identity, DFS = tr(S) = #obs
  - DFS per obs = 1 (100% information comes from obs.)



致恒宁報課

## 2. What is DFS? (2/2)

- First introduced to NWP by Fisher (2003) and Cardinali et al. (2004)
- Popular diagnostics for Var, but not many application to EnKFs.
- Liu et al. (2009) derived a simple method to compute DFS in EnKF framework:

 $tr(\mathbf{S}) = tr(\mathbf{H}\mathbf{K}) = tr(\mathbf{H}\mathbf{A}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}) = (\mathbf{R}^{-\frac{1}{2}}\mathbf{Y}^{a})^{\mathsf{T}}(\mathbf{R}^{-\frac{1}{2}}\mathbf{Y}^{a})/(N_{ens}-1)$ 





#### 3. Ensemble-based DFS diagnostics at JMA DFS per obs

Why?

#### global LETKF at JMA (50 members)



- Reasonable amount of information (10-15%) coming from conventional (*sparse*) Comparable to observations.
- Little (<1%) information extracted from satellite (*dense*) observations, hyperspectral sounders (AIRS/IASI; *very dense*) in particular (~0.1%). An order of

5

An order of magnitude smaller than in 4D-Var





### 4. Why DFS so small for EnKF?

- My Answer: not enough ensemble size.
- With simple algebraic argument, we can show, for any EnKF *local* analysis, that DFS = tr(HK) < N<sub>ens</sub> - 1 where N<sub>ens</sub> is the ensemble size.

 → DFS underestimated (smaller than optimal) whenever #ens << #obs (locally)</li>



## 5. Proof of DFS<sup>ens</sup> $< N_{ens} - 1$ (1/2)

Assume you have true **B**. For true (canonical) KF, the following equality holds:  $(\mathbf{H}\mathbf{A}\mathbf{H}^{\mathsf{T}})^{-1} = (\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}})^{-1} + \mathbf{R}^{-1}$  accuracy of analysis is the sum of accuracy of background and observation Let  $\mathcal{O} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H}\mathbf{B}^{1/2}$  (called *observability matrix* in Electrical Engineering/control theory literature) and apply  $\mathbf{R}^{-\frac{1}{2}}$  from left and right; we have

 $\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{A} \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-\frac{1}{2}} = \mathbf{R}^{-\frac{1}{2}} ((\mathbf{H} \mathbf{B} \mathbf{H}^{\mathsf{T}})^{-1} + \mathbf{R}^{-1})^{-1} \mathbf{R}^{-\frac{1}{2}} = ((\mathcal{O} \mathcal{O}^{\mathsf{T}})^{-1} + \mathbf{I})^{-1}$ 

By eigen-decomposing  $\mathcal{O} \mathcal{O}^{T}=U\Lambda^{b}U^{T}$ ,  $\Lambda^{b}=diag(\lambda_{1}^{b}, \lambda_{2}^{b}, ..., \lambda_{r}^{b}, 0, ..., 0)$ 

(where r=rank(  $\mathcal{O} \mathcal{O}^{\mathsf{T}}$ )), we have

$$\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{A} \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-\frac{1}{2}\mathsf{T}} = (( \mathcal{O} \mathcal{O}^{\mathsf{T}})^{-1} + \mathbf{I})^{-1} = \mathbf{U} \Lambda^{a} \mathbf{U}^{\mathsf{T}}$$
with  $\Lambda^{a} = \operatorname{diag}(\lambda^{a}_{1}, \lambda^{a}_{2}, ..., \lambda^{a}_{r}, 0, ..., 0), \quad \lambda^{a}_{i} = \lambda^{b}_{i}/(\lambda^{b}_{i} + 1) < 1$ 
  
→ DFS<sup>opt</sup> = tr(HK) = tr(HAH<sup>T</sup>R<sup>-1</sup>) = tr(R<sup>-\frac{1}{2}</sup> HAH<sup>T</sup> R<sup>-\frac{1}{2}</sup>)

eigenvalues of normalized analysis error covariance in obs space are all less than 1.

=  $\sum_{i} \lambda^{a}_{i} < r = rank(\mathbf{R}^{-1/2}\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1/2})$ 

= min{rank(R), rank(H), rank(B)} = #obs (for most cases)



## 5. Proof of DFS<sup>ens</sup> $< N_{ens} - 1$ (2/2)

Now, consider a local analysis in EnKF (*for now, ignore localization*). In EnKF, **B** is approximated by  $\mathbf{B}^{ens} = \mathbf{X}^{b}\mathbf{X}^{bT}/(N_{ens}-1)$ . Since rank( $\mathbf{R}^{-\frac{1}{2}}\mathbf{H}\mathbf{B}^{ens}\mathbf{H}^{T}\mathbf{R}^{-\frac{1}{2}}$ )

= min{rank(**R**), rank(**H**), rank(**X**<sup>b</sup>)}

= min{ #obs, #obs,  $N_{ens} - 1$ } =  $N_{ens} - 1$  (if  $N_{ens} < #obs$ )

it follows that

DFS<sup>ens</sup> = tr(**HK**<sup>ens</sup>)=tr( $\mathbf{R}^{-\frac{1}{2}}\mathbf{H}\mathbf{A}^{ens}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}}$ ) <rank( $\mathbf{R}^{-\frac{1}{2}}\mathbf{H}\mathbf{B}^{ens}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}}$ ) =  $N_{ens} - 1$ 



8 Numerical Prediction Division

• DFS is underestimated in EnKF if  $N_{ens} \ll \text{DFS}^{\text{opt}}$ 

• So what?





#### 6. Implications What's wrong if DFS<sup>ens</sup> ≪ DFS<sup>opt</sup> ?

If DFS<sup>ens</sup> << DFS<sup>opt</sup>, it means...

- Analysis increment is smaller than under optimality
  - analysis increment (in obs space) is HKd=HAH<sup>T</sup>R<sup>-1</sup>d
  - so if DFS (=tr(HAH<sup>T</sup>R<sup>-1</sup>)) is underestimated, so is analysis increment
- (more important) Since DFS = tr(R<sup>-1/2</sup> HAH<sup>T</sup> R<sup>-1/2</sup>) is a measure of analysis spread in obs space, underestimated DFS implies overconfidence in analysis (overconfident posterior).
  - → Requires strong covariance inflation, but inflating too much is no good since that would lead to inaccurate representation of "the errors of the day" (i.e., destroy flow-dependence)



#### Digression: Interpreting the counterintuitive results from the recent literature

- "Using *less* obs is *better*"
  - ECMWF global LETKF (Hamrud et al. 2015, MWR)
  - Convective-scale COSMO-LETKF (Schraff et al. 2016, QRJMS)
  - Radar DA at RIKEN, Japan (Poster 2.3 by Guo-Yuan Lien)
  - Meta-analysis of the literature by Tsyrulnikov (2010; COSMO Newsletter No. 10):

"Optimal localization scale occurs when local analysis domain is small enough so that "ensemble size (is) commensurable with the number of *observed degrees of freedom* within [the local patch]"

 $\rightarrow$  Justification with DFS argument:

Locally assimilating more obs than #ens results in overconfident analysis spread (requiring unreasonably large inflation) and also smaller-than-optimal analysis increment.



#### 7. Proposed Solution: B-localization through *modulated ensemble*

- DFS underestimation is a quantitative manifestation of the well-known (but vaguely defined) *rank deficiency issue*.
- $\rightarrow$  Resolved by covariance localization.
- PO-EnKF or serial enSRF:
  - Replacing  $\mathbf{B}^{ens}\mathbf{H}^{T}$  with  $\mathbf{p}_{o}\circ(\mathbf{B}^{ens}\mathbf{H}^{T})$  increases effective rank of  $\mathbf{B}^{ens}$  in local analysis, mitigating the DFS underestimation
- By contrast, **R**-localization employed in LEKTF does not resolve the issue
   ·· local analysis is still solved in (N<sub>ens</sub>-1)-dim space spanned by the perturbations, even with **R**-localization
- Can we somehow increase the rank within ensemble-transform framework?
- We can, by **B-localization through modulated ensemble approach** (C. Bishop, pers. comm. at EnKF workshop 2016)



#### 7. Proposed Solution: B-localization through *modulated ensemble*

 B-localization with modulated ensemble (Bishop and Hodyss, 2009; ECO-RAP paper Part II)

$$- \boldsymbol{\rho}_{\circ}(\mathbf{B}^{\text{ens}}) = \boldsymbol{\rho}_{\circ}(\mathbf{X}\mathbf{X}^{T}) / (N_{\text{ens}}-1) = (\mathbf{Z}\mathbf{Z}^{T}) / (N_{mode}N_{\text{ens}}-1)$$

- where

 $Z = [\mathbf{w}_{1} \circ \mathbf{x}_{1}, \mathbf{w}_{1} \circ \mathbf{x}_{2, \dots}, \mathbf{w}_{1} \circ \mathbf{x}_{Nens}; \dots, ; \mathbf{w}_{Nmode} \circ \mathbf{x}_{1}, \mathbf{w}_{Nmode} \circ \mathbf{x}_{2, \dots}, \mathbf{w}_{Nmode} \circ \mathbf{x}_{Nens}]$ with  $\rho \approx WW^{T}$ ,  $W = [\mathbf{w}_{1}, \mathbf{w}_{2, \dots}, \mathbf{w}_{Nmode}]$ 

- (My) intuitive interpretation:
  - Localized empirical covariance is identical to the empirical covariance of many modulated ensembles, each "raw" member x<sub>i</sub> "localized" with many different localization modes w<sub>i</sub>

→ LETKF with model-space **B**-localization can be achieved by performing regular ETKF (w/o localization) using the modulated  $N_{mode} \times N_{ens}$ -member perturbations.



### 8. Exposition with a simple covariance model Experimental setup

Simplest possible scenario following Bishop and Hodyss (2009; ECO-RAP paper Part I):

- 1D periodic domain with **#grid=360**.
- **B** and **R** perfectly known. All errors unbiased and Gaussian. **R** diagonal.
- Perfect generation of  $\mathbf{X}^{b}$  (i.e.,  $\mathbf{B}^{ens} = \mathbf{X}^{b} \mathbf{X}^{bT} / (K-1)$  converges to **B** with  $K \rightarrow \infty$ )
- Equally-spaced obs assimilated, **#obs=120**.
- No cycling.
- All experiments repeated 1,000 times and averaged.
- Specification of **B**:
  - superposition of sinusoids
  - Fourier transform of a Gauss function
  - virtually zero correlation beyond 15-grid interval.
  - Variance is 1 everywhere (B<sub>ii</sub>=1)





We focus on eigen-spectrum of  $\mathbf{R}^{-\frac{1}{2}}\mathbf{H}\mathbf{A}^{opt}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}}$ because DFS is proportional to the area below this curve.



DFS= tr( $\mathbf{R}^{-1/2}$  HAH<sup>T</sup>  $\mathbf{R}^{-1/2}$ ) =  $\sum_i \lambda^a_i$ 

 HA<sup>opt</sup>H<sup>T</sup> computed as ((HB<sup>true</sup>H<sup>T</sup>)<sup>-1</sup>+R<sup>-1</sup>)<sup>-1</sup>



致值予報課

#### 40-member ETKF without localization



- HA<sup>ens</sup>H<sup>T</sup> computed as ((HB<sup>ens</sup>H<sup>T</sup>)<sup>-1</sup>+R<sup>-1</sup>)<sup>-1</sup>
- with raw B<sup>ens</sup>=X<sup>b</sup>X<sup>bT</sup>/(N<sub>ens</sub>-1) (without localization)
- *K*=40 member ensemble.
- Abrupt truncation at N<sub>ens</sub>-1=39<sup>th</sup> mode.





40-member Model-space B-localization using modulated ensemble retaining 20 localization modes (localization scale tuned to give best analysis RMSE)



- Almost perfectly recovers the true (optimal) eigenspectrum.
- → B-localization very effective when assimilating dense obs.





#### 40-member LETKF with **R**-localization

(localization scale tuned to give best analysis RMSE)



HA<sup>R-loc</sup>H<sup>T</sup> computed for each grid as
 Y<sup>b</sup>{(K-1)I+p<sub>R</sub>oR<sup>-1</sup>}<sup>-1</sup>Y<sup>bT</sup>, then synthesized.

Zero eigenvalues beyond  $N_{ens}$ -1=39<sup>th</sup> mode.



数值予報課

# 9. Non-local obs and localization

- Another disadvantage of R-localization: Not clear how to localize impact of obs whose position in physical space is not clearly defined, .e.g.,
  - Satellite radiances
  - Ground-based GNSS obs (e.g., Poster 1.1 by Michael Bender)
  - Surface pressure (!)
- A problem common with obs-space localization on  $\mathbf{B}\mathbf{H}^{\mathsf{T}}$
- → Solution already proposed: model-space **B** localization (Poster 4.5 by Craig Bishop)



# 9. Non-local obs and localization 1D toy system mimicking GNSS PWV

- Bg covariance: Gaussian-shape
- Obs operator: exponentially decays with height
- Single-obs assimilation with true (canonical) KF:  $x^a x^b = \mathbf{K} d \propto \mathbf{B} \mathbf{H}^T = \Sigma_k h_k \mathbf{b}_k$



# 9. Non-local obs and localization 1D toy system mimicking GNSS PWV

- Analysis increment from 20-member LETKF with R-localization
- assuming that the obs is "located" at the surface (k=1)
- Localizations with Gaspari-Cohn, localization scale *L* ranging from 5 to 40
- Small  $L \rightarrow$  increment too much localized near the surface
- Large  $L \rightarrow$  spurious increments inevitable in the upper atmosphere



# 9. Non-local obs and localization 1D toy system mimicking GNSS PWV

- Analysis increment from 20-member LETKF with B-localization retaining 10 modes
- Localizations with Gaspari-Cohn, localization scale L ranging from 5 to 40
- Moderate L (15 $\sim$ 30)  $\rightarrow$  increment very close to true KF, with no spurious increment in the upper layers
- Quite insensitive to the exact choice of  $L \rightarrow L$  can be tuned rather easily



#### Summary:

- LETKF with **R**-loc is efficient and works well for relatively sparse and local obs.
- May not be optimal otherwise.
- Model-space **B**-localization with modulated ensemble solves the problems with dense and non-local obs.
- My plan over the next few years:
- Investigate whether **B**-loc really improves real NWP
  - Target obs: ground-based GNSS (ZTD or PWV)
  - Target model: convective-scale LAM (JMA-NHM)
  - DA method: **B**-loc in the vertical, **R**-loc in the horizontal



23 Numerical Prediction Division

Danke schö