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Background: A typical EnKF serial observation 
assimilation scheme
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Background: Gaussian pdfs versus bounded pdfs
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2010, 63 
fatalities, losses 
$2-4B, linked to 

H20 plume
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Inverse-Gamma pdf of obs given truth 
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y, the observed value
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The likelihood function
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The posterior pdf is then a gamma
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Equation for posterior mean
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y, the observed value

Posterior mean equation has Kalman like gain but everything else is inverted ! 
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Background: The GIGG-EnKF serial observation 
assimilation scheme with linear regression
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• Aim: Outline some improvements to GIGG-EnKF (Bishop, 2016, 
QJRMS).
1. Background

2. Solution to Bayes’ theorem for gamma prior and inverse-gamma-likelihood is now 
precise as Kinfinity - previously just approximate. Significance: Rigorous basis for 
GIG 

3. Test of standard GIG for tropical cyclone surface wind energy assimilation problem: 
Significance: Standard GIG better than EAKF/EnKF for this problem.

4. Local iterative regression to account for non-linearity in observation operator. 
Significance: Greatly reduces analysis error.

5. Rigorous approach for dealing with on-off variables (rain, cloud, fire, etc) with gamma 
based delta function. Significance: Justifies ignoring dry members when rain is 
observed. 
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Overview
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Simple DA testbed for TC like surface winds

A random draw from a TC relevant pdf
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Another random draw from the simple testbed’s multi-scale pdf

Simple DA testbed for TC like surface winds



• Model states defined by random, multi-scale TC like (u,v) wind field.
• Let observations be non-linear functions of u and v; e.g. Kinetic Energy, KE=(u2+ 

v2)/2,  tanh(KE) or Heaviside(KE-constant).
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Simple DA testbed for TC like surface winds
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Prior mean, obs, truth and GIG analysis using a 3000 member 
ensemble (no localization required). 

Observed variable is KE=0.5(u2+v2). 
Distribution of random observations given 
truth is an inverse gamma pdf with a relative 
variance of 0.25.

GIG analysis mean
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Does the GIG variation on the EAKF improve the KE analysis?

The GIG-EnKF 
outperforms the EAKF 
under all metrics in all 
8 independent sets of 
50 trials.

The only difference 
between EAKF and GIG 
code is the univariate 
ensemble update. 
Linear regression code 
is identical.
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Observed variable is 
KE=0.5(u2+v2).
Standard GIG/EAKF 
uses linear regression 
to give an inconsistent 
analysis of (ua,va) and 
(KE)a. Bottom left panel 
gives (KE)a. Bottom 
right gives,                  

- which is far less 
accurate than (KE)a.    

18

Treatment of non-linearity of Kinetic Energy ob operator.
Linear regression from ob to model space yields inconsistencies!
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Treatment of non-linearity of Kinetic Energy ob operator
(linear regression from ob to model space yields inconsistencies)
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Background: The GIGG-EnKF serial observation 
assimilation scheme

Background: The GIGG-EnKF serial observation 
assimilation scheme

(EAKF/EnSRF/EnKF)

Need to replace 
the linear 
regression step 
with something 
better!
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New method to account for non-linearity in ob-operator:
The observation to model space consistency iteration
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New method to account for non-linearity in ob-operator:
The observation to model space consistency iteration
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Observed variable is 
KE=0.5(u2+v2).
Linear regression plus 
consistency iteration 
improves consistency 
of (ua,va) and (KE)a. 
Bottom left panel gives 
(KE)a. Bottom right 
gives,                  

The observation to model space consistency iteration.
Test in 2D model

The observation to model space consistency iteration.
Test in 2D model
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Observed variable is 
KE=0.5(u2+v2).
Linear regression plus 
consistency iteration 
improves consistency 
of (ua,va) and (KE)a. 
Bottom left panel gives 
(KE)a. Bottom right 
gives,                  

The observation to model space consistency iteration.
Test in 2D model

The observation to model space consistency iteration.
Test in 2D model

Accuracy of direct and derived KE analyses are now the same
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Ob-to-model space consistency iteration reduces mse in (u,v) field by 75%;
i.e. standard deviation of analysis error is halved

Chance of getting 28 wins (as above) by pure chance is 1 in 2.8x108 .

The observation to model space consistency iteration.
28 independent tests in 2D model

The observation to model space consistency iteration.
28 independent tests in 2D model



1. Solution to Bayes’ theorem for gamma prior and inverse-gamma-likelihood is now precise 
as Kinfinity - previously just approximate. Significance: Rigorous basis for GIG 

2. In 1D experiments, the new local ob-space to model space iteration procedure gave fairly 
accurate multi-modal posteriors.

3. In idealized TC surface wind energy assimilation experiments, GIG soundly beat 
EAKF even using linear regression. The newly introduced ob-space to model space 
non-linear regression iteration:
i. Gave consistent model and ob space analyses

ii. Greatly reduced mean square error (mse).

iii. Gave an analysis ensemble variance approximately equal to mse. 

4. Rigorous approach for dealing with on-off variables (rain, cloud, fire, etc) with gamma 
based delta function. Significance: Justifies ignoring dry members when rain is 
observed. 
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Conclusions
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Ob-to-model space 
consistency iteration 

reduces mse in KE 
field by 41%

Ob-space

Ob-space

Model-space

Model-space

The observation to model space consistency iteration.
28 independent tests in 2D model

The observation to model space consistency iteration.
28 independent tests in 2D model



Ob-to-model-space consistency iteration helps!
(Result for Kinetic Energy below, 7x4 independent trials)

28

Ob-to-model space 
consistency iteration 

reduces mse in KE 
field by 41%

Chance of getting 7 
wins by pure chance is 

1 in 128.
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Data assimilation for clouds and high-resolution models 

Ideal Data Assimilation (DA) in a simple model

Ideal DA gives the posterior pdf of replicate Earths 
having the same y value as our Earth’s y value. 

Ideal posterior pdf is bi-modal. Bi-modality caused by non-linearity

Prior and posterior pdf of 
u2  are like gamma pdfs.
Highly non-Gaussian.
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Data assimilation for clouds and high-resolution models 
Current DA: 4DVar-No-Outer-Loop (US Navy) and EnKF (DWD)

EnKF/4DVarNOL posterior pdf of u is very poor.

EnKF & 4DvarNoOuterLoop 
(4DVarNOL) posterior pdf of 
u2  is highly inaccurate.
Also, analyzed u2  values are 
not equal to the square of 
analyzed u values

Fails due to linear, Gaussian assumptions
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Data assimilation for clouds and high-resolution models 
Current DA: Incremental 4DVar (4DVar-with-outer-loop)

Fails due to Gaussian assumption and the presence of multiple extrema (non-linearity)

4DVar posterior 
pdf of u is still 
poor.

4DVar posterior pdf of u2  is 
highly inaccurate.

However, analyzed u2  
values are now equal to the 
square of analyzed u values

4DVar uses perturbed 
observations. Each posterior 
member is a local extreme value 
of a Gaussian approximation to 
the true posterior pdf.
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Solid black line gives prior pdf of zonal wind (u) field
u2 is observed at 25th, 50th or 75th percentile of prior (left to right)
Dashed black line gives true posterior pdf of u field
Solid mauve line is GIGG posterior pdf with no outer loop
Solid cyan line is GIGG posterior pdf with outer loop 

The observation to model space consistency iteration.
Test in 1D model

The observation to model space consistency iteration.
Test in 1D model



• EnKFs, 4DVAR, Particle filters, etc, all fail in this case. 
• How would Bayes’ theorem be used in this case?
• Might an adaptation of the GIGG filter better deal with this problem?
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Problem: No rain in ensemble 
forecast but rain is observed
Problem: No rain in ensemble 
forecast but rain is observed
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No rain forecast as a gamma 
function limit

No rain forecast as a gamma 
function limit

Observation likelihood pdf
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No rain forecast as a gamma 
function limit
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No rain forecast as a gamma 
function limit
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No rain forecast as a gamma 
function limit
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No rain forecast as a gamma function 
limit: a gamma delta function

No rain forecast as a gamma function 
limit: a gamma delta function

Observation likelihood pdf
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No rain forecast as a gamma function 
limit: a gamma delta function

No rain forecast as a gamma function 
limit: a gamma delta function

Observation likelihood pdf

Dashed blue lines 
pertain to 

posterior/analysis pdf

Using gamma delta function to represent the zero-rain-prior pdf makes Bayes’ theorem give a 
plausible posterior pdf.
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gamma-delta + gamma pdf for case 
when some members dry and some wet

gamma-delta + gamma pdf for case 
when some members dry and some wet

Observation likelihood pdf

Dashed blue lines 
pertain to 

posterior/analysis pdf

In this case, only the mean and variance of the wet members determine the mean and variance 
of the posterior. Dry members ignored!
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Multi-variate GIGG-Delta filter also fits 
seamlessly in DART

Multi-variate GIGG-Delta filter also fits 
seamlessly in DART
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GIGG-delta for coupled model DA:

An idealized coupled model

GIGG-delta for coupled model DA:

An idealized coupled model

Evolution based on Lorenz 96 model plus relaxation to adjacent levels. The blue line variable is 
analogous to zonal wind/current. Green bars give rainfall which only occurs when  upper level 
divergence exceeds a small threshold . Rain magnitude is proportional to product of square of 
the surface wind‘s deviation from climatological mean and the square root of upper level 
divergence. Rain increases flux of momentum from upper levels to lower levels.
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7 independent 30 day DA cycles
GIGG-delta vs EnKF mse in case when EnKF has stabilizing inflation factor

7 independent 30 day DA cycles
GIGG-delta vs EnKF mse in case when EnKF has stabilizing inflation factor

Mse for wind/current GIGG-delta (+ signs) and EnKF (x signs)

Mse for rain GIGG-delta (+ signs)  and EnKF (x signs)

GIGG-delta much better than EnKF in this “stable-
system versus stable-system” comparison.

Forecasts



• Theory for GIGG-delta presents a compelling solution to the DA 
conundrum of observed rain but no rain in prior 

• Extension of univariate to multivariate same as Anderson 2003,2007 

• Increase in inflation required to stabilize EnKF renders it much less 
accurate than the GIGG-delta filter.

Summary for GIGG-Delta filter



• To do this, one first needs to find a compelling multi-variate 
statistical model of the moments of the prior.

• … not so easy in the multi-variate case …
• Multi-variate Wishart, Gaussian and log-normal all fail

45

Multi-variate “all-at-once” assimilation of parameterized non-
Gaussian pdfs not so easy



First four moments of actual prior
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Mean of powers of relative perturbation [(x-<x>)/<x>]

47

Wishart distribution and other such 
distributions based on sample covariances of 
samples from normal pdfs produce spatially 
uniform relative variances of 2/(N-1) where N is 
the sample size. Hence, they are incapable of 
representing the variation in relative variance 
seen here. 

Literature search failed to find gamma-like 
multi-variate pdf capable of producing the 
mean of powers of relative perturbations 
shown here. 

Variance almost twice the size of the mean here



First four moments of Gaussian model of prior
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First four moments of log-normal [1+x] model of prior
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First four moments of log-normal [f(x)] model of prior
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• To do this, one first needs to find a compelling multi-variate 
statistical model of the moments of the prior.

• … not so easy in the multi-variate case …
• Multi-variate Wishart, Gaussian and log-normal all fail

51

Multi-variate “all-at-once” assimilation of parameterized non-
Gaussian pdfs not so easy

Serial univariate assimilation as in EnKF, EAKF 
and EnSRF seems to be a way around this
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