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Numerical discretization schemes have a long history of incorporating
the most important conservation properties of the continuous system
in order to improve the prediction of the nonlinear flow.

The question arises, whether data assimilation algorithms should
follow a similar approach?

Explore which conservation properties are well recovered when using
an ensemble Kalman filter

Include as constraints those that are not in data assimilation

Show implication on the prediction



Preserving physical properties
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Preserving physical properties

Goal: Explore which conservation properties are well recovered when

using LETKF
» Study conservation of mass, energy and enstrophy with LETKF
» including dependence of the results on the observational type and
localization radius
» Non-linear dynamics with 2D nonlinear shallow water model
» Model settings:
1 Mirror boundaries,
2 constant f = 0.0001,
3 259 x 259 grid points with spacing 50km
4 leapfrog scheme with time step 125s
5 Asselin filter with 0.01.
» Numerical discretization of the dynamics is such that mass, energy

and momentum are conserved and enstrophy for non divergent flow.



Nonlinear shallow water model
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Time evolution of mass, total energy and enstrophy, normalized with
respective initial values, in a nature run.



Energy and Enstrophy
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Kinetic energy spectra
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Averaged over the first (upper) and last five assimilatien cycles (lawer) =




Prediction
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Y. Zeng and T. Janjic, 2016: Study of Conservation Laws with the Local Ensemble
Transform Kalman Filter, Q. J. R. Meteorol. Soc.,142:699, 2359-2372.
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—  EnKF with constraints —

Janjic, T., D. MclLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and

preservation of positivity with ensemble-type Kalman filter algorithms, Mon. Wea.
Rev., 142, No. 2, 755-773.

Zeng, Y., T. Janji¢, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902—-2914, doi:10.1002/qj.3142.
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QPEns algorithm

Inverse of ensemble derived analysis error covariance can be used to
minimize the cost function to obtain the analysis
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SQPEns algorithm

Inverse of ensemble derived analysis error covariance can be used to
minimize the cost function to obtain the analysis

. . 1. o .
w)' = w:" + arg min 5[5W’T(Pb)*15w’ + f’TRflf’]

Swi
subject to
¢i(dw;) <0, je{l,2,...,m}
gk(dw;) =0, ke {1,2,....my}
where

i a,i b,i gi _ .0, b,i i —o
ow' =wy —w f =wy' —Hw' — Hedw' — 77,



QPEns algorithm in ensemble space
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QPEns algorithm in ensemble space

p = Rank(P®), which is no larger than N — 1

Po=1LL"

QPEns Algorithm in ensemble space

) 1 .7 . )
n' = arg min 5[77’7—77’ + f’TRflf’]
77i

subject to the following non-negativity constraint:
_Ln, < W[i,i-

The algorithm reduces to EnKF if there are no constraints present.



Preserving physical properties
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QPEns analysis in ensemble space with positivity constraint. Both mass
conservation and positivity constraint improve analysis.
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EnKF vs. QPEns
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EnKF vs. QPEns analysis with positivity and mass constraint for modified
shallow water model (Wuersch and Craig 2014).
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RMSE u RMSE r (dry and wet)
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Figures from Ruckstuhl and Janjic 2018: Parameter and state estimation with EnKF

based algorithms for convective scale applications, QJRMS.
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Prediction
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Zeng, Y., T. Janji¢, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902-2914, doi:10.1002/qj.3142.
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Diagnostics

Divergence
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Variations of model diagnostics of divergence and noise within the data
assimilation in experiments
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Small scale spectra
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Conclusion

QPEns a method for addressing positivity
Method is by construction multivariate
Allows inclusion of other linear and nonlinear constraints

Improves accuracy and bias in simple problems



Conclusion

QPEns a method for addressing positivity
Method is by construction multivariate
Allows inclusion of other linear and nonlinear constraints

Improves accuracy and bias in simple problems

Although total energy of the analysis ensemble mean converges
towards the nature run value with time, enstrophy does not.

Imposing the conservation of enstrophy within the data assimilation
effectively avoids the spurious energy cascade of rotational part and
this way succesfully suppresses the noise.

Conserving mass and positivity reduces the noise in convective scale
data assimilation applications.
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