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Motivation

I Numerical discretization schemes have a long history of incorporating
the most important conservation properties of the continuous system
in order to improve the prediction of the nonlinear flow.

I The question arises, whether data assimilation algorithms should
follow a similar approach?

1 Explore which conservation properties are well recovered when using
an ensemble Kalman filter

2 Include as constraints those that are not in data assimilation
3 Show implication on the prediction
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Preserving physical properties
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Preserving physical properties
Goal: Explore which conservation properties are well recovered when
using LETKF

I Study conservation of mass, energy and enstrophy with LETKF

I including dependence of the results on the observational type and
localization radius

I Non-linear dynamics with 2D nonlinear shallow water model
I Model settings:

1 Mirror boundaries,
2 constant f = 0.0001,
3 259× 259 grid points with spacing 50km
4 leapfrog scheme with time step 125s
5 Asselin filter with 0.01.

I Numerical discretization of the dynamics is such that mass, energy
and momentum are conserved and enstrophy for non divergent flow.
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Nonlinear shallow water model

Time evolution of mass, total energy and enstrophy, normalized with
respective initial values, in a nature run.



Energy and Enstrophy
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Kinetic energy spectra

Averaged over the first (upper) and last five assimilation cycles (lower).



Prediction

RMSE for u RMSE for h

Y. Zeng and T. Janjic, 2016: Study of Conservation Laws with the Local Ensemble
Transform Kalman Filter, Q. J. R. Meteorol. Soc.,142:699, 2359–2372.
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— EnKF with constraints —

Janjic, T., D. McLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and
preservation of positivity with ensemble-type Kalman filter algorithms, Mon. Wea.
Rev., 142, No. 2, 755-773.

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902–2914, doi:10.1002/qj.3142.



QPEns algorithm

Inverse of ensemble derived analysis error covariance can be used to
minimize the cost function to obtain the analysis

wa,i
k = wb,i

k + arg min
δw i

1
2
[δwi T (Pb)−1δwi + f i

T
R−1f i ]

subject to

δwi ≥ −wb,i
k .

where

δwi = wa,i
k −wb,i

k , f i = wo,i
k −Hkwb,i

k −Hkδwi − rok .



SQPEns algorithm
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k + arg min
δw i

1
2
[δwi T (Pb)−1δwi + f i

T
R−1f i ]

subject to

cj(δwi ) ≤ 0, j ∈ {1, 2, ...,m1}
gk(δwi ) = 0, k ∈ {1, 2, ...,m2}

where

δwi = wa,i
k −wb,i

k , f i = wo,i
k −Hkwb,i

k −Hkδwi − rok .



QPEns algorithm in ensemble space

ρ = Rank(Pb), which is no larger than N − 1

δwi = Lηi

Pb = LLT

QPEns Algorithm in ensemble space

ηi = arg min
ηi

1
2
[ηi

T
ηi + f i

T
R−1f i ]

subject to the following non-negativity constraint:

−Lηi ≤ wf ,i
k .

The algorithm reduces to EnKF if there are no constraints present.
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QPEns analysis in ensemble space with positivity constraint. Both mass
conservation and positivity constraint improve analysis.



EnKF vs. QPEns

EnKF vs. QPEns analysis with positivity and mass constraint for modified
shallow water model (Wuersch and Craig 2014).



RMSEs



Figures from Ruckstuhl and Janjic 2018: Parameter and state estimation with EnKF
based algorithms for convective scale applications, QJRMS.



Prediction

RMSE for h RMSE for u

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902–2914, doi:10.1002/qj.3142.



Diagnostics

Divergence Noise

Variations of model diagnostics of divergence and noise within the data
assimilation in experiments

E_BSP_NO E_BSP_En E_BSP_Es and E_BSP_EnEs.



Small scale spectra

Energy spectra Enstrophy spectra

E_BSP_NO E_BSP_En E_BSP_Es E_BSP_EnEs.



Conclusion

I QPEns a method for addressing positivity
I Method is by construction multivariate
I Allows inclusion of other linear and nonlinear constraints
I Improves accuracy and bias in simple problems

I Although total energy of the analysis ensemble mean converges
towards the nature run value with time, enstrophy does not.

I Imposing the conservation of enstrophy within the data assimilation
effectively avoids the spurious energy cascade of rotational part and
this way succesfully suppresses the noise.

I Conserving mass and positivity reduces the noise in convective scale
data assimilation applications.
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