Ensemble-Based Data Assimilation of GPM/DP R Reflectivity into the Nonhydrostatic Icosahed ral Atmospheric Model NICAM Shunji Kotsuki¹, Koji Terasaki¹, Shigenori

Otsuka¹,

Kenta Kurosawa¹, and Takemasa Miyoshi Data Assimilation Research Team, RIKEN-AICS, Japan ACS^University of Maryland, College Park, Maryland, USA K computer

<u>6th ISDA, March 09, 2018 @ Ludwig-Maximilians-Universität,</u>

Project Overview

Local Ensemble Transform Kalman Filter *(Hunt et al. 2007)*

Goal: Look for most effective use of GPM precipitation measurements.

- NICAM-LETKF (NWP) system
 - System developed (Terasaki et al. 2014, SOLA)
 - AMSU-A assimilated (Terasaki and Miyoshi 2018, JMSJ)
 - MHS assimilated (Chandramouli et al., in prep.)
 - GSMaP assimilated (Kotsuki et al. 2017, JGR-A)
 - Model parameter w/ GSMaP (Kotsuki et al., in revision)
 - Adaptive-RTPP&RTPS (Kotsuki et al. 2017, QJRMS)
 - EFSO implemented (Kotsuki et al., in prep.; Poster 5.10)
 - Accounting for correlated R (Terasaki et al., in prep.)
 - System accelerated (Yashiro et al. 2016, GMD)
- Extrapolation nowcast system

- System developed (Otsuka et al. 2016, WAF)

This presentation

– Merging nowcast & NWP for global precip. FCST

Merging nowcast & NWP for global precipitation FCST

GSMaP: Global Satellite Mapping of Precipitation

(Otsuka, Kotsuki, and Miyoshi 2016, WAF)

Local Threat Score (LTS) defined

Global Threat Score		Obs. True	Obs. False
$GTS(t) = \frac{IP_G(t)}{TP_G(t) + FP_G(t) + FN_G(t)}$	FCST Positive	TP	FP
$Tr_G(t) + Fr_G(t) + FN_G(t)$ $X_G(t) = \mathbf{P}_{i} X_i(t) \mathbf{P}_{i}$	FCST Negative	FN	TN

*global sampling, time-*S: pixel Size (km²) $X_j = TP_j, FP_j, FN_j, TP_j$

Local Threat Score (LTS) defined

Global Threat Score

 $GTS(t) = \frac{TP_G(t)}{TP_G(t) + FP_G(t) + FN_G(t)}$

$$X_G(t) = \mathbf{P}_i(t) \mathbf{P}_i$$

global sampling, time-S: pixel Size (km²) $X_j = TP_j, FP_j, FN_j, TP_j$

Local Threat Score

$$LTS_i = \frac{TP_{L,i}}{TP_{L,i} + FP_{L,i} + FN_{L,i}}$$

$$X_{L,i} = \bigoplus_{t \ j \notin D_i} X_j(t) \bigoplus_j$$

local & temporal sampling

Spatially-estimated Weight (2014/09~2014/11)

$$MERGE_{grid} = w_{grid} \, \text{(I-} w_{grid}) \, \text{(WCAST}_{grid}$$

Local Threat Scores (2014/09~2014/11)

$$MERGE_{grid} = w_{grid} \, \text{(I-} w_{grid}) \, \text{(WCAST}_{grid}$$

Local Threat Scores (2014/09~2014/11)

 $MERGE_{grid} = w_{grid}$ $(1 - w_{grid})$ $(0 - w_{grid})$

Local Threat Scores (2014/09~2014/11)

 $MERGE_{grid} = w_{grid}$ $(1 - w_{grid})$ $(0 - w_{grid})$

Global Precip. FCST Scores

Assimilating GPM/DPR reflect ivity

GPM/DPR (Ku and Ka bands)

Sim. 3-D Radar Reflectivity

Level 2	Normal Scan (NS)	Matched Scan (MS)	High-Sens. (HS)
width	245 km	125 km	125 km
Δx	5 km	5 km	5km
Δz	250 m	250 m	500 m
Band	Ku	Ka	Ka

Assimilation of GPM/DPR by NICAM-LETKF

Assimilation of GPM/DPR by NICAM-LETKF

2014/06/16/0000UTC

DA cycle experiment (vs. ERA Interim; 2014)

RMSD: T

RMSD: Qv

- : CTRL
- : w/ KuPR & KaPR (thinned by 3x3 grids)
- : w/ KuPR & KaPR (thinned by 5x5 grids)

Effective use of GPM/DPR

GPM/DPR 6-hr coverage

Maybe too sparse 🚠 Parameter DA tested

Estimating Cloud Microphysic s Parameter with GPM/DPR

Single moment cloud microphysics NSW6

- NSW6 (vapor, cloud, ice, rain, snow, graupel)
 - Parameters : terminal velocity coefficients

$$v_{t[r,s,g]}(D) = c_{[r,s,g]} D^{d[r,s,g]} (\rho_0 / \rho)^{1/2}$$
NICAM default NICAM for MJO
$$c_g = \underbrace{\mathbf{v}_{g}^{4} g \rho_g}_{C_D} \underbrace{\mathbf{v}_{g}^{2}}_{C_D} \mathbf{v}_{0}$$
NICAM default NICAM for MJO
$$Cr \quad 130.0 \quad 58.0$$

$$Cs \quad 4.84 \quad 0.90$$

$$C_D \quad 0.60 \quad 2.50$$

Single moment cloud microphysics NSW6

- NSW6 (vapor, cloud, ice, rain, snow, graupel)
 - Parameters : terminal velocity coefficients

RMSD vs. ERA Interim (2014)

Improved by parameter DA

Degraded by parameter DA

Summary

- Merging nowcast and NWP
 - Local threat score (LTS) defined
 - Spatially-distributed weight estimated w/ LTS
 - Merged Precip. FCST ≥ nowcast & NWP
- Assimilating GPM/DPR reflectivity
 - NICAM-LETKF system updated (112-km 4 28-k
 m)
 - Implementing Joint Simulator into NICAM-LETK
 F
 - GPM/DPR assimilated, but impact is unclear
 - Parameters of the cloud microphysics estimated

APPENDIX

Change in precipitation fields (2014/06/16)

Parameter Estimation in NICAM-LETKF

Parameter Estimation in NICAM-LETKF

Estimated Parameter (large scale condensation)

(Kotsuki et al., in revision)

Estimated Parameter (large scale condensation)

Estimated Parameter (large scale condensation)

Satellite-simulator implemented

Kotsuki et al. (2014, SOLA)

Satellite-simulator implemented

Kotsuki et al. (2014, SOLA)

- : GPM/DPR bright band height (m),

- - -: NICAM 0°C height (m)