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Background

•Cloud radars have been the workhorse for understanding cloud 
processes and improving cloud and radiation schemes in NWP and 
climate models.

•Radar pulses penetrate all but deepest convection; they observe 
cloud structure.

•Cloud lidars have also been invaluable for NWP model evaluation 
by being adept at detecting cloud boundaries, ice cloud properties 
(particularly powerful in synergy with radar).

•Although observations of cloud are routinely assimilated at ECWMF 
and other NWP centres (e.g., microwave radiances), profiles of radar 
and lidar (e.g., CloudSAT and CALIPSO) have not been assimilated 
operationally.

•1D+4D-Var experiments are encouraging; radar and lidar show 
positive impact in analysis and subsequent forecast (Janisková, 
2015) 
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Profiling measurements reveal cloud structure
•ECMWF�s radar and lidar observation operators now show great 
agreement with CloudSat and Calipso measurements
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Typhoon Choi-wan
 (Sept. 15th 2009)

cloud lidar backscatter   (at 532 nm, Calipso)
cloud radar reflectivity   (at 94 GHz, CloudSat)
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Challenges of assimilating cloud radar and lidar

•Simplified moist physics (used in 4D-Var minimization) must 
sufficiently represent relevant cloud processes 
(autoconversion/accretion, evaporation, super-cooled liquid, …)

•Complex observation operators (non-linearity, microphysics, 
single scattering properties, multiple scattering, attenuation, cloud 
overlap, …)

•Non-trivial bias correction and careful screening are required

•Difficulties characterising observation errors (representativity, 
heteroskedacity and correlation between observations)

•Data availability (of satellite measurements for real-time 
assimilation)

– EarthCARE (Earth Clouds, Aerosols and Radiation Explorer), 
due for launch in 2020, will provide opportunity for realtime 
assimilation.
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T, q, ps  � temp., humidity
                surface pressure
w � hydrometeor content
FC � cloud fraction
FP � precipitation fraction
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Apply log transform 
(radar only?)
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• Screening indicators:
– height of observations
– cloud fraction given by model and observations
– plausible bounds for radar/lidar (observation & model equivalent 

to observations)
– first guess departures
– avoiding radar multiple scattering and lidar excessive attenuation

• Observations are superobbed to (at least) model gridbox and level.

• A balance between including as much information from observations 
as possible whilst preventing ‘bad’ ones from degrading the 
analysis/forecast. 

Observation screening and quality control
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• Data assimilation systems combine a model background and 
observations given the errors that are inherent in both. However, any 
biases in either will likely degrade the subsequent analysis and 
forecasts.

• ECWMF uses an implicit bias correction scheme for many observation 
types (VarBC), but initially we will use an offline scheme

• Indicators are required to subset the data so that different biases can 
be accounted for. Selected bias correction indicators:

‒ height
‒ temperature
‒ model dominant hydrometeor type
‒ mean radar reflectivity/lidar backscatter (‘symmetric’)

Bias correction scheme

FG departures based on 12 hour forecasts at TCo639 and 
137 model levels using IFS cycle 43r1. Obs. superobbed to 
model grid.



  Before bias correction

  After bias correction

  bias = -2.0834 dB, std = 10.5464 dB

  bias = 0.10147 dB, std = 9.4894 dB

Bias correction for Cloudsat radar (September 2007)



  After bias correction

  Before bias correction   bias = 2.1818 dB, std =7.5915 dB

  bias = -0.048232 dB, std =6.7431 dB

Bias correction for Calipso lidar (September 2007)
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• Observation errors are a crucial component of a data assimilation system as, 
coupled with the background error, control the weight each obs. is given.

• Often assumed to have no correlation & used for tuning data assim. system
• Typically inferred through a statistical evaluation of FG departures and/or 

analysis increments

• Selected approach � explicit specification of observation error based on 
physical understanding because:
– Owing to the profiling nature of the observations, the true obs. error likely 

to be highly situation dependent
– At the time EarthCARE becomes operational, no availability of long history 

of observations to generate a climatological obs. error covariance matrix

• Under the hypothesis of uncorrelated errors, obs. error  is defined as                 
   a combination of instrument error, obs. operator error and representativity 
error:

Observation error definition
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A flow-dependent representativity (sampling) error
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• Representativity error dominates observation error for profiling observations 
of cloud. It is also highly scene-dependent.

• Use ‘sampling approach’ based upon the assumption that:
– the local variability of measurements along the satellite track  is 

representative of the gridbox variability
– the spatial variability can be approximated using a climatological 

correlation

As – area of superob, A2D – area of gridbox

Variance of measured 
variable within gridbox Scaling factor

Correlation of 
measured 
variable within 
gridbox

 Extendable to horizontal 
and vertical correlations

Collaboration with Olaf Stiller (DWD)
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Evaluation of representativity error methods
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• Simulate profiling measurements through ‘gridboxes’ 
constructed using 2D data.

• Compare three methods:
– ‘1D Method’ (only accounts for correlation between 

measurements) 
– ‘2D method’ (fully accounts for all correlations)
– ‘SFM’, structure function maximum method (Stiller, 2010)

Synthetic data MODIS optical depth Scanning cloud radar

Fielding et al., (in prep)
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1. Using CloudSAT and CALIPSO, gather correlation by parametrizing the observed 
correlation function, i.e.:

2. Create lookup table of ‘scaling factors’ with height, latitude and longitude as indicators

3. For each observation use standard deviation along track as estimate of gridbox 
population standard deviation

4. Multiply corrected sample standard deviation by scaling factor

Corr. Length 
(km)

Scaling 
factor

Low cloud (< 4 km) High cloud (> 4 km)

Practical implementation of method
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Other sources of observation error

•The random error in the measurement due to noise
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Instrument error:

 PSD � particle size distribution
 LWC � liquid water content

• Typically small compared to other errors, but straightforward to estimate

Observation operator error:

• To convert model hydrometeor content into radar reflectivity/lidar backscatter, 
many assumptions made with the potential to introduce error in:
– Radiative transfer of scattering models
– Hydrometeor shape
– Particle size distribution
– Multiple scattering
– Subgrid assumptions (overlap, inhomogeneity & convective precip.fraction)

• To characterize errors:
– perturbing parameters with plausible bounds
– using Monte Carlo simulation � PSD uncertainty is st.dev. of reflectivity/ backscatter 

given a set of random realisations of PSD variables / densities / particle shapes
• Errors are function of hydrometeor type, LWC and temperature



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Cloudsat
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Error components for radar
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Calipso
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Obs. operator
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Repres. error
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Total error

Obs. operator error tends 
to dominate total error
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Error components for lidar
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Global statistics of observation error
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FG departures Forecast error Observation error

Variance of FG dep. is first order 
approximation of observation 
error



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Observation errors are a good predictor of FG 
departures when a fixed offset is applied
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FG departures Forecast error Observation error

Obs. error only
Obs. error + 4 dB

Obs. error only
Obs. error + 6 dB

Circle size proportional 
to sample size

Cloudsat Calipso
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Summary

•Given overview of current developments towards real-time 
assimilation of cloud radar and lidar at ECMWF

•Outlined flow-dependent observation error, including a new 
simple approach to characterising the sampling error

•Explored O-B statistics for CloudSat and Calipso, and their 
relationship with the expected observation error

•Feasibility studies in full 4D-Var system

•Optimising superob size

•Consideration of observation error correlations (particularly 
important in the vertical)
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Future work



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Additional slides

21
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PSD

• Warm phase

– Lognormal for cloud (Miles et al., 2000)

– Exponential distribution with empirical fit for rain (Abel and Boutle, 2012)

• Cold phase

– Temperature dependent, based on observations of mid-latitude frontal clouds (Field 
et al., 2007) (Cloud ice has constant T = –70 °C)

Scattering properties

• Radar

– Ice cloud: 5 bullet rosettes (Liu, 2008)

– Strat. and conv. snow: Aggregates (Hong, 2007)

• Lidar

– Ice: 5 bullet rosettes

– snow: Aggregates (Yang et al., 2000)
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Miles et al., 2000: Cloud droplet size distributions in low-level stratiform clouds
Abel and Boutle, 2012: An improved representation of the raindrop size distribution for single-moment physics
Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles
Hong, G., 2007: Radar backscattering properties of nonspherical ice crystals at 94 GHz
Yang et al., 2000: Parameterization of the scattering and absorption properties of individual ice crystals

 Microphysical assumptions

Highlighted boxes show developments

Nakaya snow crystal morphology diagram (Libbrecht 2005)
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Improving the impact of lidar observations

•Initial testing (e.g., 1D+4DVar) showed radar dominated 
information content

•New double-column approach mimics accurate but expensive 
multi-column method

23

Old single-column

Multi-column New double-column

True
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Single-column approach

Calipso lidar backscatter averaged to model grid

OLD
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Double-column approach

Double-column approach will allow 
more scenes to be assimilated

Calipso lidar backscatter averaged to model grid

NEW
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water content (g m–3) water content (g m–3)

Uncertainty in backscatter

Uncertainty in attenuation

Estimation of particle size and shape uncertainty  
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ZdB
dB

Z'  Zexp 2   ln Z'   ln(Z) 2

Z'dB  4.343  lnZ  2  4   2
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Climatological obs. error
Flow dependent obs. error

CALIPSOCloudsat
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