

Assimilating SEVIRI-VIS to improve the representation of convective initiation and low stratus

Lilo Bach, C.Schraff, C.Köpken-Watts, U.Blahak, R.Potthast (DWD) L.Scheck (LMU)

Objective of Sinfony

Enhance forecast skill on the convective scale

Assimilating observations to improve convection

Preconvective environment

Conventional observations

Convective initiation

➔ SEVIRI-VIS

Active convection

- Radar reflectivities and radial winds
- Lightning observations
- ➔ (Radar-) Objects

Assimilating observations to improve convection

Preconvective environment

Conventional observations

Convective initiation

→ SEVIRI-VIS

Active convection

- Radar reflectivities and radial winds
- Lightning observations
- ➔ (Radar-) Objects

New observations

- \rightarrow SEVIRI channel in the visible spectral range (0.6 µm)
- ➔ Observation operator MFASIS (Scheck et. al, 2016)
- ➔ 5km x 3km Pixel (over COSMO-DE domain)

Why assimilate them?

- Information on cloud cover
- ➔ Brightness contrast useful to identify low clouds (compared to IR)
- Transparency of thin cirrus

Schraff et. al, 2016

K: Kalman gain for ensemble mean

Outline

- 1. Low stratus single observation experiment
- 2. Experiments in convective period

Low stratus

Single Observation Experiment

- ➔ December, 30th (2016)
- Low stratus in Southern Germany/ France

Two Experiments

- 1. Position 950 hPa + narrow vertical localization
- 2. No vertical localization

Single Observation Experiment

- ➔ December, 30th (2016)
- Low stratus in Southern Germany/ France

Two Experiments

- 1. Position 950 hPa + narrow vertical localization
- 2. No vertical localization

Can we improve the representation of low stratus in the ensemble mean and ensemble members?

How is low stratus represented in the first guess ensemble?

How is low stratus represented in the first guess ensemble?

There is room for improvement of the ensemble...

Superobbed reflectance observations

Does the filter draw torwards the observations?

Does the filter draw torwards the observations?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Can we generate cloud water?

How does the distribution of reflectance change?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Analysis increments with vertical localization

Analysis increments without vertical localization

Analysis increments in temperature as would be expected for low stratus vertical profiles?

Vertical positioning and localization

In this case

Cloud Water

Wrong position + vertical localization: no analysis increments

<u>Temperature</u>

No vertical localization: spurious analysis increments due to spurious correlations

Reflectance represents a vertically integrated quantity

Approach

Avoid spurious analysis increments

- Make use of EUMETSAT cloud top height products
 - Optimal Cloud Analysis (OCA)
 - ➔ NWCSAF
- Position at cloud top height and use asymmetric Gaspari Cohn function?
- ➔ Additionally combined assimilation with SEVIRI-IR

SUMMARY low stratus single observation experiment

- ➔ LETKF shows reasonable performance
- ➔ Improvement of representation of low stratus in ensemble mean and ensemble
- ➔ Temperature increments in vertical region of low stratus reasonable (cooling)
- Above questionable but not judgable (no radiosonde)
- Need for vertical localization

Convection

Experiments

- Convective period (May, 28th to June, 6th 2016)
- ➔ COSMO-2.8km (convection-permitting)
- Operational set-up
- Superobbing 18km x18km (eff. resolution)
- No vertical localization
- Observation error 0.3
- ➔ Assimilation 1/hour (analysis time)
- Conventional obs (incl. MODE-S)
- Conventional obs (incl. MODE-S) + SEVIRI-VIS

Why assimilate SEVIRI-VIS?

- 1. Can we improve the accuracy of cloud cover?
- 2. Can we improve the moisture fields?
- 3. Can we improve convective precipitation?
- 4. Is the quality of the other variables sustained?

Convective initiation

DWD

Can we improve cloud cover?

Can we improve cloud cover?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Can we improve cloud cover?

Can we improve cloud cover?

First Guess RMSE (reflectance)

Forecast RMSE (cloud cover)

Verified against SYNOP

Averaged over 00,06,12,18 12-hour forecasts

New moisture-sensitive observations

- → < 5% of upper-air observations in COSMO-KENDA are moisture-sensitive</p>
- \rightarrow Radiosondes, 9 Lufthansa aircrafts
- \rightarrow Ongoing work on GPS Slant Delay + IR-channels of Seviri + radar reflectivities

SEVIRI-VIS adds, depending on superobbing/thinning

- $\rightarrow \approx 17000 \text{ obs/day (summer)}$
- $\Rightarrow \approx 8500 \text{ obs/day (winter)}$

Do we obtain a positive impact on the moisture fields?

Can we improve the moisture fields?

Can we improve convective precipitation?

Frequency Bias unchanged, ETS slightly improved

Is the quality of the other variables sustained?

Verified against radiosondes, aireps and synop

Surface T2M, TD2M, RH2M, PS, U10M, ...

9

SUMMARY why assimilate SEVIRI-VIS?

1. Can we improve the accuracy of cloud cover?

→ Yes

- 2. Can we improve the moisture fields?
 - → Yes
- 3. Can we improve convective precipitation?
 - → Promising at small thresholds, work to be done for higher ones
- 4. Retain quality of other variables?
 - → Yes partly, surface degradation due to compensating errors

& lack of vertical localization?

Summary

➔ First experiments show potential in many directions

Scientific issues

- Impact of vertical positioning and localization using cloud products?
- Do nonlinearities lead to physical inconsistencies such that newly generated clouds evaporate soon after analysis?

What else?

- Switch to RTTOV-MFASIS & ICON-LAM & lots of tuning
- Test combination with SEVIRI-IR allsky
- ➔ Goal: improvement of cloud cover and precipitation up to +12 hours

Assimilating SEVIRI-VIS to improve the representation of convective initiation and low stratus

Lilo Bach, C.Schraff, C.Köpken-Watts, U.Blahak, R.Potthast (DWD) L.Scheck (LMU)

