

Using solar satellite channels for convective-scale data assimilation

Leonhard Scheck^{1,2}, Bernhard Mayer², Martin Weissmann^{1,2}

1) Hans-Ertl-Center for Weather Research, Data Assimilation Branch 2) Ludwig-Maximilians-Universität, Munich

Solar satellite channels and radiative transfer

- Solar channels (λ<4µm,visible+IR): **high-resolution information on clouds**
- Multiple scattering makes radiative transfer (RT) complex → sufficiently fast forward operators for convective scale data assimilation (DA) not available

- → development of MFASIS (Method for Fast Satellite Image Synthesis), a 1D RT method based on look-up tables computed with standard methods
- Key ideas: **simplification of vertical structure**

(8 parameters to define clouds & geometry), lossy LUT compression (8GB \rightarrow 21MB, Fourier coeff. for constant scattering angle)

- **4 orders of magnitude faster** than discrete ordinate method (DISORT) \rightarrow fast enough for operational DA
- SEVIRI 0.6µm: Relative error wrt. DISORT: < 2% (calibration error 4%). Does not include 3D RT errors...
- Will be included in next **RTTOV** release (as a part of DWDs contribution to NWP-SAF, work in progress)

Accounting for 3D RT effects: Cloud top inclination

Rotated frame of reference with ground-parallel cloud \rightarrow nearly a 1D problem (inclined ground is taken into account by using a modified surface albedo) \rightarrow Solve modified 1D problem, transform back to non-rotated frame.

Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst without 3D correction

Cloud top definition : optical depth 1 surface (detect tau=1 in all columns, fit plane to column and 8 neighbour columns)

Cloud top inclination correction \rightarrow Increased information content Much more cloud structure is visible, in particular for larger SZAs For instance, one can distinguish convective from stratiform clouds

Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst with 3D correction

Cloud top definition : optical depth 1 surface (detect tau=1 in all columns, fit plane to column and 8 neighbour columns)

Cloud top inclination correction \rightarrow Increased information content Much more cloud structure is visible, in particular for larger SZAs For instance, one can distinguish convective from stratiform clouds

Comparison with 3D Monte Carlo RT calculations

"Does it just look prettier, or are the errors really reduced?"

Clean comparison (only RT errors, no model errors) based on 156m ICON runs from HD(CP)2 project:

- RMSE is reduced
- Histogram shape is improved
- Other 3D effects are still missing (e.g. shadows, flux through cloud sides)

LETKF Assimilation experiments

- Codes: KENDA (Schraff et al. 2016) + COSMO-DE (2.8km) -N • Case: 5 June 2016 Ensemble: 40 members Assimilation window: 1h 50°N Covariance inflation: #obs/hour Additive + multiplicat. + RTPP SYNOP [877] assimilation/evaluation region RAD [581] Conventional obs.: TEMP [456] COSMO-DE 45°N SYNOP, TEMP, Profiler, AIREP [1994] without thinning: ~9300 reflectance obs. PILOT [518] AMDAR (no MODE-S, LHN) with 16x thinning: 581 reflectance obs. 15°E 5°E 20°E 10°E ~5000 observations/hour
- Reference runs: Cycling with conv. obs. from June 4th, 21UTC June 5th, 18UTC
- Runs with conventional obs. + 0.6µm VIS SEVIRI channel: Branched from ref. run at 5UTC \rightarrow first analysis at 6UTC

Superobbing, Thinning and Localization

- **Superobbing:** 3×6 pixels $\rightarrow 18 \times 18$ km² in model space, O(eff. model resolution) Reflectance obs. every 15min $\rightarrow 9255$ reflectance superobs. per hour (> conv. obs.)
- **Thinning**, e.g. factors 4 in space & time \rightarrow 581 superobs. per hour (< conv. obs.)

- Different localizations (to avoid that VIS overwhelms conv. or vice versa)
 - Aim for both conv. and VIS: **#obs. / grid point ~ O(ensemble size)**
 - Reflectances: No vertical localization (\rightarrow see talk by Lilo Bach...)

ISDA 2018

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

MIM

Hans-Ertel-Zentrum

ISDA 2018

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

MIM

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

MIM

Single observation experiments

- Model equiv. computed with nonlinear operator differ from LETKF estimate
- Ambiguity of VIS: LWC, IWC, RH are modified \rightarrow resolve using other channels?
- More single observation experiments -> talk Lilo Bach...

Reflectance error evolution for different assimilation settings

RMSE is smaller than in **reference run** for all settings even after >3 hours. Bias evolution: some clouds dissolve

Full obs. density:

(~9300 obs./hour), obs. error 0.3 is better than 0.2 (corr. err.?)

Temporal thinning improves 3h fcsts

Temporal & spatial thinning: similar 3h fcst results

Impact on conventional observations

Relative change in RMSE of 3h forecasts caused by VIS assimilation: Mostly beneficial. But this is for only one day... \rightarrow talk by Lilo Bach!

Summary

LUDWIG-MAXIMILIANS-

MÜNCHEN

UNIVERSITÄT

MFASIS is sufficiently fast for the operational assimilation of visible satellite images

MIM

- Computationally efficient cloud top inclination parameterizations reduces the systematic error
- Assimilation experiments with KENDA: improved reflectances forecasts for > 3h, mostly beneficial impact on conventional observations

Publications:

Scheck, Frerebeau, Buras-Schnell, Mayer (2016): *A fast radiative transfer method for the simulation of visible satellite imagery*, Journal of Quantitative Spectroscopy and Radiative Transfer, 175, 54-67. Scheck, Hocking, Saunders (2016): *A comparison of MFASIS and RTTOV-DOM*, NWP-SAF visiting scientist report, http://www.nwpsaf.eu/vs_reports/nwpsaf-mo-vs-054.pdf Scheck, Weissmann, Mayer (2018): *Efficient methods to account for cloud top inclination and cloud overlap in synthetic visible satellite images*, JTECH, accepted

Evolution of skill / error growth

Ensemble FSS for reflectance > 0.4 (for 3h forecasts):

- Without VIS "skillful scale" (dashed line) ~60km after convection sets in analysis does not improve skill significantly
- With VIS assimilation: Skill is improved in each analysis for all scales, skillful scale reaches 60km only after 3h or longer

Error growth mechanisms:

- Decorrelation (could be reduced by improving wind field)
- Imbalanced or inconsistent analysis state (e.g. LWC > 0, RH < 100%)

Nonlinearity of the operator

Comparison of linear estimate for analysis model equivalents from LETKF and actual model equivalents obtained by applying nonlinear operator to analysis (incl. inflation, saturation adjustment): Significant differences for individual (super-)observations (blue), less impact on ensemble mean (red).

Reduces effectiveness of LETKF for large increments → avoid long assimilation intervals, assume larger observation errors? Outer-loop-like strategies?